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Abstract

I use Bayesian VARs with stochastic volatility to forecast global tempera-
tures and sea level and ice cover in the Northern emisphere until 2100, by ex-
ploiting () their long-run equilibrium relationship with climate change drivers
(CCDs) and (i7) the relationship between world GDP and anthropogenic CCDs.
Assuming that trend GDP growth will remain unchanged after 2024, and the
world economy will fully decarbonize by 2050, global temperatures and the
sea level are projected to increase by 2.3 Celsius degrees and 38 centimeters re-
spectively compared to pre-industrial times. Further, uncertainty is substantial,
pointing to significant upward risks. Because of this, bringing climate change
under control will require a massive programme of carbon removal from the
atmosphere, in order to bring anthropogenic CCDs back to the levels of the
end of the XX century.
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1 Introduction

For more than a decade global temperatures have been consistently breaking records
nearly every year. Against this background, the scorching summers of 2022, 2023 and
2024, characterized by heatwaves, droughts, wildfires and floods of an unprecedented
spread and intensity, have highligthed in the starkest possible way the severity of the
threat posed by climate change.

In this paper I use Bayesian VARs with stochastic volatility in order to forecast
global temperatures and sea level and ice cover in the Northern emisphere until the
end of the XXI century, by exploiting

(1) the relationship between world GDP and anthropogenic drivers of climate
change (CO2, methane, clorofluorocarbons, sulphur emissions, ...);

(77) the long-run equilibrium relationship between temperatures and either sea
level or ice cover; and

(7ii) the long-run equilibrium relationship between temperatures and all climate
change drivers (CCDs) jointly considered, both anthropogenic and non-anthropogenic
(i.e., volcanic activity and solar irradiance). Such long-run relationship is a key tenet
of climate science, and it is in fact an implication of physics laws that can be (and it
has been) tested within a laboratory setting under controlled conditions.

In line with the climate science literature, the literature on the econometrics of
climate change, and the Intergovernmental Panel on Climate Change (IPCC) reports,
I summarize the joint impact on temperatures of all CCDs via a single index, their
so-called Joint Radiative Forcing (JRF). Intuitively, the radiative forcing of individual
CCDs provides a quantitative measure, based on formulas from physics, of their ability
to trap heat in the atmosphere. The JRF index provides therefore a quantitative
summary of the overall ability of all CCDs jointly considered to trap heat. Because
of this the JRF index is, in fact, all that matters as far as climate change is concerned.
Permanent increases (decreases) in the JRF cause subsequent corresponding increases
(decreases) in global temperatures.

I estimate VARs for world GDP, global temperatures, the sea level, ice cover in the
Northern emisphere, anthropogenic radiative forcing (RF), and the radiative forcings
of volcanic activity and solar irradiance. I impose

(1) exogeneity of both volcanic activity and solar irradiance with respect to the
rest of the system;

(2) in line with a vast literature, cointegration between the JRF index and global
temperatures;

(3) cointegration between global temperatures and either sea level or ice cover, a
feature of the data that is very strongly supported by cointegration tests; and

(4) a time-varying relationship between world real GDP and anthropogenic RF
(i.e., the ‘carbon intensity’ of GDP). As I discuss below, both conceptual reasons,
and overwhelming empirical evidence, support the notion that the relationship has
indeed materially evolved since the mid-XIX century.



Finally,

(5) I allow for time-variation in trend world real GDP growth, a feature of the
data that is overwhelmingly supported by Stock and Watson’s (1996, 1998) tests.

My goal is to provide tentative answers to the following questions: What are the
increases in temperatures and the sea level, and the decrease in ice cover, that are
already implied by the levels of CCDs reached in 20247 How will these variables
evolve going forward under alternative scenarios for the dynamics of world GDP and
its carbon intensity? And what are the reductions in CCDs that will be required in
order to bring climate change under control?

1.1 Main results

Under an extreme scenario in which the state of the system is ‘frozen’ at 2024—with
both the level of world GDP and its carbon intensity fixed at their 2024 values—
median forecasts predict global temperatures to increase by nearly 5 Celsius degrees
by 2100 compared to pre-industrial times, and the sea level to increase by 48 centime-
ters. In order to put these numbers into perspective it is worth recalling that 5 Celsius
degrees is the lower bound of the estimates for the increase in temperatures associ-
ated with the so-called Paleocene-Eocene Thermal Maximum (PETM), about 55.5
million years ago. During that period Antarctica was covered with tropical forests,
and Arctic waters pullulated with alligators. If temperatures were to increase by 5
degrees compared to pre-industrial times within less than eight decades, the extent
to which society could adapt—or whether it could adapt at all—is entirely open to
question. Quite simply, this would be a different planet, far removed from the range
of temperatures under which human civilizations have flourished over the last 12 to
15 thousand years.

Under an alternative scenario in which trend GDP growth remains unchanged af-
ter 2024, and the world economy fully decarbonizes by 2050, median forecasts project
temperatures and the sea level to increase by 2.3 degrees and 38 centimeters compared
to pre-industrial times. Further, uncertainty is substantial, thus pointing to signifi-
cant upward risks: e.g., the 90%-coverage credible set for temperatures stretches from
1.2 to 3.4 Celsius degrees. Alternative scenarios based on the same assumption for
trend GDP growth and a slower pace of decarbonization, with zero carbon intensity
reached in either 2075 or 2100, paint a significantly grimmer picture.

Evidence also shows that a decrease in economic growth, with trend real GDP
growth falling by 1% either in 2025, or at several alternative future dates, does not
materially change the overall picture, with temperatures still projected to increase by
several Celsius degrees by 2100 compared to pre-industrial times. This shows that
the possible future deceleration of economic growth (due e.g. to the ongoing fall in
population growth) will only marginally affect climate change. The implication is
that full decarbonization of GDP is the only possible solution.

Under this respect, evidence shows that, even if we were somehow able to ‘freeze’



JRF at its 2024 level, the intrinsic dynamics of the system will necessarily imply
substantial increases in temperatures going forward: e.g., about two-thirds of the
density of the forecast of temperatures for 2100 is above the benchmark of the Paris
climate agreements, with a median projection equal to 1.7 degrees, and the upper
limit of the 90 per cent-coverage credible set equal to 2.2 degrees. It is important
to stress that these increases were already ‘locked in’ by 2024, which implies that
CCDs have already exceeded the levels climate scientists regard as dangerous. The
implication is that, in order to exit the danger zone, CCDs will have to be brought
back to the levels that had prevailed sometimes before 2024. The obvious question
is ‘By how much?’. Under this respect, forecasts conditional on alternative paths for
CCDs show that, given the extent of statistical uncertainty, exiting the danger zone
will require bringing CCDs back to the levels of the end of the XX century.

Until the 1970s, the accumulation in the atmosphere of anthropogenic sulphur
emissions as a by-product of burning fossil fuels had blocked solar radiation to a
significant extent, thus mitigating the temperature increases caused by other CCDs.
This is what James Hansen has labelled as the ‘Faustian bargain’ our civilization has
been entertaining for two centuries. Since then, the progressive removal of sulphur
from the atmosphere has caused the process to go into reverse. As a result, since
the early 1980s the evolution of the accumulated stock of sulphur emissions has con-
tributed to an increase in global temperatures. Evidence suggests that even if we
were somehow able to keep the other CCDs fixed at the level they reached in 2024,
the complete removal of anthropogenic sulphur emissions from the atmosphere, by
itself, would cause sizeable increases in temperatures going forward.

The paper is organized as follows. The next section discusses the data, whereas
Section 3 discusses statistical evidence on their stochastic properties. Section 4 dis-
cusses my econometric approach, and Section 5 discusses the evidence: impulse-
response functions to a permanent shock to the JRF index; and forecasts up to the
end of the XXI century, both unconditional, and conditional on alternative possible
paths for the evolution of the world GDP. Section 7 concludes.

2 The Data

Online Appendix A describes in detail the data and their sources, which are both
standard in the literatures on climate science and the econometrics of climate change.

I consider nine drivers of climate change: CO2, methane (CH4), nitrous oxide
(N20), chlorofluorocarbons (CFC11 and CFC12), anthropogenic sulfur emissions
(SOx), El Nino and La Nina (El Nifio-Southern Oscillation, henceforth ENSO), solar
irradiance, and volcanic activity. In line with the literature, I convert each individ-
ual CCD into radiative forcing (RF, expressed in Watts per square meter) based on
standard formulas from physics (see Online Appendix A). Once each CCD has been
converted into RF, I construct the aggregate JRF index as in Kaufmann, Kauppi, and
Stock (2006) by summing up the individual components. As shown by Kaufmann,
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Kauppi, and Stock (2006, see Table II and the discussion on page 261), it is indeed
not possible to reject the null hypothesis that ‘the temperature effect of a unit of ra-
diative forcing (e.g. W/m?) is equal across forcings’. The single exception is ENSO,
which I ignore for the reasons I discuss in Online Appendix A.4.! By the same token,
I construct a corresponding index of anthropogenic RF, defined as the sum of the RFs
of CO2, CH4, N20, CFC11, CFC12, and SOx.

I consider an index of global® temperatures (in Celsius degrees) for the entire
planet. As it is routine in the literature, temperatures are expressed as ‘anomalies’,
i.e. as deviations from a benchmark value. Following standard practice (see e.g.
the TPCC reports) I take the average temperature over the period 1850-1900 as the
benchmark, so that the temperature anomaly I work with is computed as deviation
from such benchmark.

Finally, I consider a series for world real GDP, an index of ice cover in the Northern
emisphere (in squared kilometers), and an index for the world sea level (in centime-
ters).

The sample period is 1850-2024.

2.1 A look at the raw data

Figure 1 shows the radiative forcing of individual climate change drivers; the JRF
index minus volcanic RF, either including or excluding the radiative forcing of an-
thropogenic sulfur emissions (SOx); the global temperature anomaly, the world sea
level, and the index of ice cover in the Northern emisphere; and either the logarithm
or the growth rate of world real GDP.

Starting from the radiative forcing of the particulates injected by volcanic activ-
ity into the atmosphere, three main findings emerge from the first panel of Figure
1. First, volcanic RF is uniformly negative. This is because the dust spewn into the
atmosphere by volcanoes prevents a fraction of solar radiation from reaching Earth
in the first place, so that its impact on JRF is by definition negative. Second, vol-
canic RF is extraordinarily volatile, and it is manifestly characterized by a sizeable
extent of heteroskedasticity. Third, although over very long periods of time?® volcanic
activity—and therefore volcanic RF—does not exhibit any trend, over comparatively
short periods (such as the sample I am here working with) there are sometimes tran-
sitory shifts in the mean, due to temporary increases in volcanic activity. This is
the case within the present context. A Bai and Perron (1998, 2003) test for multiple
breaks at unknown points in the sample in the mean of the series plotted in the first

'In brief, ENSO features virtually no spectral power at frequencies beyond 25 years, and it
is extraordinarily noisy compared to the other drivers of climate change. The implication is that
including the radiative forcing of ENSO in the JRF index would uniquely add a large amount
of high-frequency noise, whereas it would bring essentially no information about the long-horizon
developments that are the focus of the present work.

’1,.e., for the whole planet.

3The index of volcanic activity I am working with starts in the year 1500.
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panel of Figure 1, bootstrapped as in Diebold and Chen (1996), detects a break in
1961, with the p-values for the UD ., and W D ., test statistics equal to 0.050 and
0.056 respectively,® and the medians for the two sub-samples being equal to -0.126
and -0.351 respectively.” Although volcanic RF is stationary,’ and therefore provides
no contribution to the secular increase in JRF, this evidence illustrates why it is im-
portant to take it into account in the empirical work. First, the downward shift in the
series since 1961 has had a negative impact on the overall JRF index, thus counter-
acting the impact of increases in other CCDs, and causing therefore temperatures to
increase by less than they would otherwise. Not including volcanic RF in the model
would therefore distort the evidence. In particular, since hundreds of years of data on
volcanic emissions suggest that the post-1961 shift will ultimately disappear—so that
the RF of other CCDs will ultimately fully reveal itself—ignoring volcanic RF would
introduce a downward distortion in temperatures’ forecasts. Second, the series’ large
volatility compared to other CCDs, together with its heteroskedasticity, suggests once
again that ignoring it would likely distort the inference. In Section 4 I will discuss
in detail how I model both the heteroskedasticity (via stochastic volatility) and the
shift in the mean in 1961.

Turning to the other drivers of climate change, and to the aggregate indices of
radiative forcing, two main findings emerge from the second and third panels of Figure
1. First, since 1850 CO2, CH4 and SOx have been by far the dominant drivers of
the evolution of the JRF index. Second, until about the 1970s SOx had been playing
an important moderating role in the overall increase in the JRF index. Since then,
however, its previous moderating contribution has gone into reverse, as efforts to
remove anthropogenic sulfur emissions from the atmosphere have started to bear
fruits. As a result, over the last three decades the evolution of SOx’s radiative forcing
has contributed to the overall increase in the JRF index.

The third panel of Figure 1 illustrates this point in an especially stark way. Nor-
malizing the two indices” to zero in 1850, excluding the impact of SOx the index
would have increased much faster than it has historically been the case. To the ex-
tent that efforts to remove anthropogenic sulfur emissions from the atmosphere will
continue and will be successful, the radiative forcing of SOx shown in the second
panel will converge to zero, and the overall JRF index will therefore be more and
more dominated by the remaining drivers. The implications of this are sobering. As

4On the other hand, the Fr(2|1) test does not detect a second break in the mean, with the
bootstrapped p-value equal to 0.1496.

>Throughout the entire paper I focus on the medians of the two sub-samples, rather than the
means, because of the significant extent of heteroskedasticity.of volcanic RF.

6 As discussed in Section B.1 in the Online Appendix, Elliot et al.’s (1996) tests strongly reject
the null of a unit root in the series, either controlling or not controlling for the identified break in
the mean.

"We exclude from both indices volcanic RF (i.e., the series plotted in the first panel), because its
large volatility compared to other RF series would make the two indices very noisy. This is without
any loss of generality, since volcanic activity is stationary.



shown in the third panel, if in 2024 we had somehow been able to remove SOx from
the atmosphere, the normalized JRF excluding volcanic RF would have shot up from
about 2.7 to 3.2. The implication is stark. Even if we were able to keep the non-SOx
radiative forcing fixed at the level reached in 2024, efforts to clean up the atmosphere
of SOx, by themselves, automatically imply sizeable increases in temperatures going
forward.

A similar point holds for volcanic eruptions. As previously mentioned, although
over very long periods of time the amount of particulates injected into the atmosphere
by volcanic eruptions does not show any trend, in a few instances—such as over the
period since 1961—it exhibits a clear shift in the mean. Exactly as for SOx, the
fact that since the early 1960s volcanic RF has been more negative than it had been
before implies that, to the extent that the pre-1961 pattern of eruptions will ulti-
mately reassert itself, global temperatures will necessarily increase by non-negligible
amounts even in the absence of any change in the other drivers of radiative forcing.
In particular, if the median volcanic RF were to revert back to its pre-1961 value of
-0.126, in Europe temperatures would increase by 0.22 Celsius degrees.®

This, together with the previous discussion about the impact of cleaning up the
atmosphere of SOx, shows that even without further increases in the drivers of climate
change, there is already, deeply embedded in the system-Earth, a sizeable amount of
committed warming, i.e. future temperature increases that are already ‘baked in the
cake’ and impossible to avoid other than by removing carbon from the atmosphere,
geoengineering, etc. As we will see in Section 5.4, due to the comparatively long lags
with which global temperatures increase following an increase in radiative forcing,
there is in fact additional committed warming already embedded in the system-Earth.

The fourth, fifth, and sixth panels provide a stark illustration of the main fea-
tures of the global heating phenomenon, with dramatic increases in temperatures and
the sea level since 1850, and a marked shrinkage of the ice surface in the Northern
emisphere. Further, the phenomenon has clearly accelerated over the most recent
decades. This is especially clear for temperatures and ice cover, and less so for the
sea level (as I discuss below, in the long run the sea level approximately evolves with
the cubic root of global temperatures).

Finally, the last two panels, especially the bottom one, highlight sizeable changes
in the growth rate of world real GDP since 1850, with average growth first pro-
gressively increasing up until the 1960s-1970s, then decreasing, and finally seemingly
stabilizing at about 2-3 per cent.

2.2 The long-run equilibrium relationships

Figure 2 illustrates the long-run equilibrium (i.e., as we will see, cointegration) re-
lationships that are embedded in the system. The first panel shows the relationship

8This is because the cointegration vector between the temperature anomaly for the European
continent and the JRF index is indistinguishable from [1 -1]". This evidence is available upon request.
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between the level (not the logarithm) of world real GDP and the first difference of
anthropogenic RF, which as discussed in Section 2 is defined as the sum of the RF's
pertaining to CO2, CH4, N20, CFC11, CFC12, and SOx. The reason why the long-
run relationship pertains to the level of the former series and the first difference of
the latter is straightforward. Every year, in order to produce a certain amount of real
output, the world economy uses a corresponding amount of energy. This translates
into corresponding new emissions of CO2, CH4, etc., which add to the existing stocks
of anthropogenic CCDs.? In turn, this leads to a progressive increase, year after year,
in the level of anthropogenic RF, which is the fundamental driver of climate change.
The implication is that, both as a matter of logic, and in practice, the relationship
pertains to the level of world real GDP, and the change in (i.e. the first difference of)
the anthropogenic RF index.

Two things are apparent from the first panel of Figure 2. First, in the long-run
the two series tend indeed to closely co-move. Second, in the short-to-medium run
they tend however to deviate from each other. Although most of these deviations are
quite short-lived, and they can therefore be thought of as ‘noise’ contaminating the
fundamental relationship determined by the ‘carbon intensity’ of GDP, the period
between the 1930s and the end of the 1970s clearly appears different from the rest of
the sample, with a persistent negative change in anthropogenic RF. As it is apparent
from the second panel of Figure 1, this was caused by a dramatic increase in the
amount of SOx during that period. Then, starting from the 1970s, SOx first peaked,
and then started being removed from the atmosphere, with the result that the positive
relationship between world real GDP and the first difference of anthropogenic RF
reasserted itself. In Section B.3 in the Online Appendix I show that the two series
are indeed cointegrated.

The second panel of Figure 2 shows the long-run relationship between the JRF
index and the global temperature anomaly. The long-run equilibrium relationship
between the series is quite clearly apparent. Notice that the previously discussed
downward shift in the mean of volcanic RF in 1961 caused a temporary divergence
between the JRF index and temperatures. However, since volcanic RF, although
subject to infrequent and temporary shifts in the mean, is stationary, the long-run
relationship between the two series ultimately reasserted itself. Again, in Section B.3
in the Online Appendix I show that the JRF is indeed cointegrated with temperature
anomalies.

The third panel shows the long-run relationship between global temperatures and
minus the ice cover in the Northern emisphere. The figure speaks for itself, and it
clearly points towards cointegration between the two series, a feature of the data that
is strongly supported by statistical tests.

9To be precise, each CCD has a certain half-life in the atmosphere. E.g. the half-life of CO2 is
about 120 years, whereas that of methane is about 10.5 years. The fact that the dominant CCD,
CO2, has such a long half-life implies that although strictly speaking shocks to anthropogenic RF
are ultimately transitory, for practical purposes they can be regarded as permanent.



Finally, the last panel shows shows the long-run relationship between global tem-
peratures and a non-linear transformation of the sea level series. Evidence indeed
quite clearly suggests that, in the long run, the sea level approximately evolves with
the cubic root of global temperatures. In particular, the best fit is provided by an
exponent equal to 2.94, rather than exactly 3. The transformed sea level series plot-
ted in the last panel of Figure 2 is therefore equal to the ‘raw’ sea level series raised
to the power of 2.94. Again, the evidence speaks for itself, and it strongly suggests
that in the long run the two series in the panel, once appropriately rescaled, move
one-for-one.

3 Stochastic Properties of the Data

Online Appendix B features an extensive analysis of the stochastic properties of
world GDP and climate change series, based on unit root and cointegration tests;
tests for breaks in the mean; and Stock and Watson’s (1996, 1998) tests of the null
of time-invariance in the Data Generation Process (DGP) for the first differences'® of
individual series, against the alternative of random-walk time-variation in the mean.
Overall, evidence strongly and consistently suggests that

(1) in line with the evidence in Figure 1, trend world real GDP growth has exhib-
ited a significant extent of time-variation over the sample period.

(2) Solar irradiance has evolved essentially as a random-walk with drift, reflecting
its well-known long-run secular increase, whereas volcanic RF has been very strongly
stationary, either controlling or not controlling for the identified break in the mean.
Except for volcanic RF’s heteroskedasticity, there is no evidence of time-variation in
the stochastic properties of either series.

(3) Temperature anomalies, the transformed sea level, the ice cover series, and
anthropogenic RF are all 1(2). In particular, their first differences feature a random-
walk component that is very strongly and uniformly detected across the board by
Stock and Watson’s (1996, 1998) tests.

(4) In line with previous cointegration-based studies of climate change, the levels
of the JRF index and of temperature anomalies are cointegrated. As mentioned, this
is in fact what physics predicts it should be. By the same token, the level of world
GDP is cointegrated with the first difference of anthropogenic radiatiave forcing.

(5) Global temperatures are cointegrated with either ice cover, or the transformed
sea level series.

Since evidence is near-uniformly very strong and consistent, in this section I do
not discuss it in detail. The interested reader is referred to Online Appendix B for a
detailed discussion of both technical details, and the evidence itself.

Intuitively, the reason for the presence of time-variation in the means of the first
differences of the temperature anomaly, sea level, ice cover, and anthropogenic RF is

10Since volcanic RF is 1(0), for this series I consider the level.



straightforward. The system-Earth went from a period, before the Industrial Revolu-
tion, characterized by virtually no economic growth—and therefore negligible emis-
sions of anthropogenic CCDs—to the subsequent period characterized by the pro-
gressive spreading of economic growth across the globe. As an increasing number of
countries experienced sustained growth, their emissions of CCDs increased accord-
ingly. The consequence of this is the progressive long-term acceleration in the rate
of overall increase of CCDs. A second main reason for such acceleration is the fact
that, as mentioned, until the 1970s the accumulation of anthropogenic sulphur emis-
sions in the atmosphere partly mitigated the impact of increases in the other CCDs.
Since then, however, the progressive removal of sulphur has thrown this process into
reverse. This implies that the rate of change of the joint impact of all CCDs, as
captured by the JRF index, has exhibited a non-negligible extent of variation over
the sample period.
I now turn to discussing my econometric approach.

4 The Econometric Approach

4.1 The benchmark model
4.1.1 Exogenous drivers of climate change

World real GDP Based on the evidence from Stock and Watson’s (1996, 1998)
tests reported in Section B.2 in the Online Appendix, I assume that the time-varying
mean of the log-difference of world real GDP, p,, evolves as a random walk:

,ut = :ut + Ega (1)

with €' ~ N(0, 07). The deviation from g, of the log-difference of GDP, Ay, =
AlnGDP,, is then postulated to evolve as an AR(p) process,

Ay — py = 0y (AYe1 — pry_1) + oo+ Oy (AYemp — 1) + €Y (2)

with €~ ~ N(0, 0%y.), where 0%, is a time-varying variance which, as I discuss
below, is postulated to evolve according a stochastic volatility specification.

Volcanic radiative forcing Based on the evidence from Elliot et al.’s (1996, 1998)
and Stock and Watson’s (1996, 1998) tests reported in Section B.2 in the Online
Appendix, I assume that the deviation from its mean of the level of volcanic RF,
REY, follows an AR(p) process,

RF) — 6, =) (RF/ | — 64-1) + ... + ¥, (REY, — 01p) + € (3)

with d; equal to either &y, before 1961, or ds, after that, and with €} ~ N(0, o7,,),
with o, being a time-varying variance.
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Solar radiative forcing By the same token, I assume that the first difference of
solar RF, ARF}, also follows an AR(p) process,

ARF =& =@ (ARFS, =)+ ...+ ¢, (ARFS  — &) + ¢ (4)

with € ~ N(0, 0%,).

4.1.2 Long-run equilibrium relationships

Based on the evidence from Wright’s (2000) tests reported in Section B.3 in the Online
Appendix, I assume that the level of the global temperature anomaly is cointegrated
with the level of the JRF index, so that in a long-run equilibrium

JRF = oT (5)

where JRF' is the JRF index, T is either the temperature anomaly, and « is the
cointegration coefficient.

I also assume that in a long-run equilibrium the change in anthropogenic RF,
ARF}, is a function of the level (not the logarithm) of world GDP, G DP;, through
a coefficient of ‘anthropogenic RF intensity’ (or ‘carbon intensity’, as a shorthand) of
GDP, 3,

ARF = 3,GDP, (6)

In line with the discussion in Section 2.1, I assume that (3, evolves as a random walk,

By = B + Etﬁv (7)

with €/ ~ N(0, 0%). The rationale for this specification is the following. Anthro-
pogenic RF is defined as the sum of the radiative forcing of CO2, methane, nitrous
oxide, chlorofluorocarbons, and anthropogenic sulphur emissions. Due to technolog-
ical progress, since 1850 the amount of anthropogenic CCDs emitted for one unit
of world GDP has changed quite significantly. E.g., in the XIX century energy was
produced mainly by burning carbon, whereas in the XX century the world economy
mostly switched to oil, and in recent years partly to renewables. Further, as discussed,
the progressive cleaning up of the atmosphere from sulphur emissions since the 1970s
has injected a further element of time-variation in the relationship between GDP and
anthropogenic RF.

Finally, in line with the evidence in the last two panels of Figure 2, I assume that
the global temperature anomaly is cointegrated with either minus the ice cover, or
the transformed sea level series, so that in a long-run equilibrium

T'=vsS=n/1 (8)

where S and I are the the transformed sea level and ice cover series, and vg and 7;
are their respective cointegration coefficients.
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4.1.3 The structural VAR representation

I assume that conditional on the paths of the exogenous processes—yu;, Ay, RFY,
ARF?, and 3,—the evolution of the system is fully characterized by a structural VAR
(SVAR) representation for

(1) the cointegration residual between the JRF index and the global temperature
anomaly;

(2) the cointegration residuals between the temperature anomaly and either ice
cover or the transformed sea level index; and

(3) the deviation of the change in anthropogenic RF from its equilibrium with
world GDP implied by (6).

Assuming, for illustrative purposes, a SVAR with one lag, the dynamics of the
system is characterized by

[ Ay, — 1y | [ | 11 Ayt — |
ARF/ — B,GDP, T T T T T ARF/, — 3, ,GDP;_,
JRE, — aT, r r r r X T X JRE,_; —aT,_4
T, — v 1 =z x =z x x T x Ty — vl +
Ty — v4S; T T T T T T X Ti1 — 75511
RFY — 4, ‘i RFY | — 6
ARFS —¢ I ERR ARFS | —¢ |
Vi By Yeot
(9)
1 1 &
+ 1 ef‘
+ + 1 [+ + ||
+ + + 2 1 + + e’
+ + z z 1 + + €
LIl || &
I ARG
Ao M

where Ag is the impact matrix of the structural shocks; ‘+’ labels a non-negative
scalar; ‘z’ is a non-0 scalar on which no sign restriction is imposed; and all entries in
either B; or Ay that are not labelled as ‘1’, ‘+’, or ‘z’ are equal to 0. ¢! is a shock
capturing variation in anthropogenic radiative forcing over and above that due to
changes in the level of world real GDP. As such, it captures a wide range of phenom-
ena, the most important of which is a sizeable portion of the secular variation in the
stock of anthropogenic sulfur emissions. When SOx is removed from the atmosphere
anthropogenic RF increases, whereas the impact on world real GDP is negligible to

nil. €/'51, €¥1, and € are three orthogonalized shocks that do not have any specific

interpretation. On impact /7 only affects temperatures, ice cover, and the sea level;

;T only affects ice cover and the sea level; and €7 only affects the sea level. Since

neither shock has any clear interpretation, in what follows I will ignore them.
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The matrices B; and Ay encode the exogenous evolution of Ay, — u,, REY — 6;
and ARF® — £, each one uniquely as a function of its own lags and its own shocks.
Further, B; assumes that the deviation of anthropogenic RF from its technology-
dictated long-run equilbrium, ARFA — 3,GDP,, is not affected by either volcanic
or solar RF. The rationale for this is that ARF* — 3,GDP; hinges on technological
relationships, and as such it should therefore have nothing to do with either volcanic
or solar activity.

For each draw from the posterior distribution of the model’s parameters, I impose

the following restrictions on the IRF's of the four shocks I am interested in, etA voer

e/, and €;:
e a positive etA Y produces non-negative IRFs at all horizons for GDP, anthro-
pogenic RF, JRF, global temperatures, the sea level, and ice cover.

e Positive ¢/, ¢/, and ¢ produce non-negative IRFs at all horizons for anthro-
pogenic RF, volcanic RF, and solar RF respectively. Any of the three shocks
produces non-negative IRFs at all horizons for JRF, global temperatures, the
sea level, and ice cover.

Finally, for each draw from the posterior distribution I impose the restriction that
a unitary increase in JRF due to any of the four shocks produces the same impulse
vector at t=0 for temperatures, sea level, and ice cover. That is, if AJRFy=1 in
response to either etAy, el e/ or €, then ATy=a, ndASy=b, and Aly=—c for any of
the four shocks, with a, b, c>0. The rationale is the same that justifies aggregating the
radiative forcing of individual climate change drivers into a single index, the JRF. As
previously discussed, evidence suggests that the specific source of radiative forcing is
irrelevant. In particular, as shown by Kaufmann, Kauppi, and Stock (2006, see Table
IT and the discussion on page 261), it is not possible to reject the null hypothesis
that ‘the temperature effect of a unit of radiative forcing (e.g. W/m?) is equal across
forcings’.

4.1.4 Estimation

I estimate all models via Bayesian methods, based on a straightforward adaptation to
the problem at hand of the Metropolis-within-Gibbs algorithm proposed by Justini-
ano and Primiceri (2008) to estimate DSGE models with stochastic volatility. The
algorithm is described in detail in Online Appendix D. In this sub-section I only
briefly describe its main features.

Justiniano and Primiceri’s (2008) algorithm (see their Appendix A) consisted of
two ‘blocks’ of steps. In Block I the stochastic volatilies of the structural disturbances,
and their hyper-parameters, were drawn conditional on the parameters of the DSGE
models via a Gibbs step. In Block II a Metropolis step was used in order to draw
the DSGE model’s parameters conditional on the stochastic volatilities. Within the
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present context, in Block II, instead of drawing the parameters of the DSGE mod-
els, I draw the parameters of the VAR (9), again via a Metropolis step. As for step
I, the only difference with Justiniano and Primiceri (2008) is that I use a simpler
specification for the stochastic volatilities. Instead of using their mixture of distribu-
tions, I postulate that any of the volatilities of the structural innovations evolves as
in Jacquier, Polson, and Rossi (2002).

I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate
10,000,000 draws, which I ‘thin” by sampling every 1,000 draws in order to reduce
their autocorrelation. This leaves 10,000 draws from the ergodic distribution which
I use for inference. For all models the fraction of accepted draws is very close to the
ideal one, in high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995). 1
check convergence of the Markov chain based on Geweke’s (1992) inefficiency factors
(IF's) of the draws from the ergodic distribution for each individual parameter. For
all parameters the IFs are equal to at most 3-4, well below the values of 20-25 which
are typically taken to indicate problems in the convergence of the Markov chain.

4.1.5 Restrictions imposed in estimation

In estimation I impose the restrictions that, for each parameters’ draw from the
posterior distribution, shocks generating permanent increases in either anthropogenic
RF (i.e., e/ and ), or the RF of solar irradiance (¢7), generate non-negative IRFs
at all horizons for the respective series, i.e. anthropogenic RF and the RF of solar
irradiance, respectively. Finally, I restrict the response of volcanic RF to volcanic RF
shocks (¢}") to be negative at all horizons.

5 Evidence

5.1 Trend GDP growth and the relationship between GDP
and anthropogenic emissions

The first panel of Figure 3 shows world real GDP growth and the two-sided median
estimate of its time-varying trend p,, together with the 16-84 and 5-95 per cent
credible sets of the posterior distribution. The estimate of i, has been computed via
the Monte Carlo integration procedure proposed by Hamilton (1986). Based on the
median estimate, trend growth had progressively increased from slightly more than 1
per cent in the 1850s to slightly more than 2 per cent in the aftermath of WWII; it
had further accelerated, reaching a peak of about 3.5 per cent in the mid-1960s; and
it has decreased ever since, reaching about 2.5 per cent at the end of the sample.
The remaining two panels of Figure 3 show either the one- or the two-sided median
estimates of the anthropogenic RF intensity of GDP, i.e. [3,, together with their 16-
84 and 5-95 per cent credible sets. Consistent with the evidence in the second and
third panels of Figure 1, until WWI the negative impact on anthropogenic RF of
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Figure 3 World real GDP growth and two-sided estimate of its trend, and one- and two-sided estimates of
the anthropogenic radiative force intensity of GDP (median, and 16-84 and 5-95 credible set)
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the accumulation of sulphur emissions in the atmosphere roughly balanced out the
positive impact of the remaining anthropogenic CCDs. As a result, as shown in
the third panel of Figure 1, the JRF index net of the impact of volcanic emissions
had remained essentially constant. Since solar irradiance plays a minor role, this
implies that anthropogenic RF had also remained virtually unchanged between the
mid-XIX century and WWI. This is why the one-sided estimate in the second panel of
Figure 3 exhibits modest variation until WWI. Between the aftermath of WWII and
the 1970s, on the other hand, the accumulation of sulphur emissions had dominated
other anthropogenic CCDs, with the result that the anthropogenic RF intensity of
GDP had dramatically decreased to zero. This is consistent with the fact that, in the
third panel of Figure 1, the JRF index net of volcanic emissions had decreased during
those years. Finally since the 1980s the removal of sulphur from the atmosphere
contributed to the increase in anthropogenic RF, with the result that anthropogenic
RF intensity has dramatically shot up.

5.2 The volatilities of the structural shocks

Figure 4 shows the estimated standard deviations of the seven identified structural
disturbances. For two of them—the shock to solar RF, and the residual orthogonalized
shocks to temperatures, ice cover and sea level—the volatility has been virtually
unchanged over the entire sample period. At the other extreme, in line with the
evidence in the first panel of Figure 1, the volatility of shocks to volcanic RF has
exhibited a dramatic extent of variation, which closely mirrors the negative spikes
in Figure 1. The standard deviation of innovations to real GDP growth exhibits a
roughly hump-shaped pattern, with an increase starting from the early XX century,
a peak around World War II, and a sharp fall in the 1950s. Starting from the early
XXI century, the shocks of the financial crisis and then of the COVID pandemic have
led to a progressive increase. Finally, the standard deviation of the residual shock
to anthropogenic RF (i.e. €') exhibits an even clearer hump-shaped pattern, with a
peak reached roughly around World War 1.

5.3 Impulse-response functions to radiative forcing shocks

Figure 5 shows the series’” IRFs to radiative forcing shocks. For each draw from the
posterior distribution I normalize the IRF's to either anthropogenic or solar RF shocks
by the long-run impact on anthropogenic and solar RF, respectively. On the other
hand, since volcanic RF shocks are transitory, I normalize their IRF's by the impact
on volcanic RF at t=0.

Following an exogenous shock to anthropogenic RF, i.e. €', anthropogenic RF
itself essentially reaches its new long-run equilibrium in about two decades, whereas
the response of temperatures, the sea level and ice cover is more drawn out and
inertial.
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As one would expect from the first panel of Figure 1, the response of volcanic RF
to €/ reverts to zero very quickly, in slightly more than ten years. The responses
of temperatures, ice cover and sea level are significant on impact, but they quickly
become insignificant just a few years later. As for the sea level, it is barely significant
even on impact.

Finally, the response of solar RF to ¢} is virtually flat at all horizons, thus showing
that this series is essentially a pure unit root process. The responses of temperatures,
ice and sea level are, as expected, drawn out, although with a different profile from
the IRFs to €.

5.4 Unconditional forecasts under ‘no change’ scenarios

Figure 6 shows evidence from the following exercise. I ‘freeze’ the state of the system—
in particular, both the level of GDP, and the estimate of 3,—at 2024, and I then
stochastically simulate the model forward until the end of the XXI century. The evi-
dence from this exercise is sobering. Under such ‘no change’ scenario, median forecasts
predict the temperature anomaly to reach nearly 5 Celsius degrees by 2100, respec-
tively, with the 90%-coverage credible set equal to [3.8; 6.1] degrees. The forecasts
for the sea level and ice cover are equally ominous, with the median projection for
the former reaching 48 centimeters in 2100, and the 90%-coverage credible set for the
latter reaching nearly zero—i.e., no ice in the Northern emisphere—at the end of the
century.

5.5 Forecasts conditional on alternative assumptions about
the evolution of GDP and anthropogenic RF intensity

Figure 7 shows evidence from the following exercise. I ‘freeze’ once again the state of
the system at 2024, and I then stochastically simulate the model forward until the
end of the XXI century (1) keeping GDP at its 2024 level, and (2) assuming full decar-
bonization of the world economy in 2025. The evidence from the exercise is sobering.
Even if we were somehow able to prevent any increase in anthropogenic RF after
2024, still, the intrinsic dynamics of the system in response to past JRF increases
would produce dangerous levels of warming going forward, with corresponding im-
pacts on sea level and ice cover. Focusing on global temperatures, about two-thirds
of the density of the forecast for 2100 is above the benchmark of the Paris climate
agreements of 1.5 Celsius degrees, with a median projection equal to 1.7 degrees, and
the upper limit of the 90 per cent-coverage credible set equal to 2.2 degrees. It is im-
portant to stress that these increases were already ‘locked in’ by 2024, which implies
that CCDs have already exceeded the levels climate scientists regard as dangerous. In
turn this implies that only bringing the JRF back to levels reached sometime before
2024 would allow to bring climate change under control. The obvious question is by
how much should the JRF decrease. Figures 8 and 9 provide some tentative answers
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to this question.

Figure 8 shows shows evidence from the following exercise. I ‘freeze’ trend GDP
growth, 1, to the estimated value for 2024, and I then simulate the model forward
until 2100 conditional on three alternative scenarios for the evolution of anthropogenic
RF intensity, in which after 2024 (3, decreases linearly, reaching zero in either 2050,
2075, or 2100. Even the best-case scenario, in which full decarbonization is achieved
by 2050, paints a grim picture, with the median forecast for the temperature anomaly
reaching a 2.3 Celsius degrees increase compared to pre-industrial times. Further, the
upper bound of the 90 per cent-coverage credible set stretches to 3.4 degrees.

5.6 Removing carbon from the atmosphere

Clearly, limiting ourselves to full decarbonization by 2050 is not enough, which sug-
gests that, after peaking sometime in the future, anthropogenic RF should be de-
creased via a massive programme of carbon removal from the atmosphere. The ob-
vious question is: ‘To what level should anthropogenic RF be brought back?’ Figure
9 provides some evidence on this. The exercise is the same as in Figure 8, with
the only difference that after peaking in 2050, anthropogenic RF is then brought
back (in terms of its median projection) to the level of the end of the XX century
(specifically, 1990). Under this path for anthropogenic RF, the median projection
for global temperatures converges to about 0.2. The obvious reason for this ‘under-
shooting’ compared to the 1.5 degrees target of the Paris accord is the large extent
of uncertainty, with the upper limit of the 90%-coverage credible set being equal to
1.5 degrees.

6 Conclusions

In this paper I use Bayesian VARs with stochastic volatility to forecast global temper-
atures, sea level, and ice cover in the Northern emisphere until 2100 by exploiting ()
their long-run equilibrium relationship with climate change drivers (CCDs) and (i7)
the relationship between world GDP and anthropogenic CCDs. Assuming that trend
GDP growth will remain unchanged after 2024, and the world economy will fully de-
carbonize by 2050, global temperatures and the sea level are projected to increase by
2.5 Celsius degrees and 45 centimeters respectively compared to pre-industrial times.
Further, uncertainty is substantial, pointing to significant upward risks. Because of
this, bringing climate change under control will require a massive programme of car-
bon removal from the atmosphere, in order to bring anthropogenic CCDs back to the
levels of the end of the XX century.
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A The Data

A.1 Data sources
A.1.1 Temperature anomalies

Annual data since 1850 (January-December averages, in Celsius degrees) for the global land
and ocean temperature anomalies, as well as for the global overall anomaly (i.e., both land
and ocean) are from the website of the U.S. National Oceanic and Atmospheric Adminis-
tration (NOAA) at: https://www.ncei.noaa.gov/. They are expressed as deviations from
the 1901-2000 average. Since the standard reference period used first and foremost by the
Intergovernmental Panel on Climate Change (IPCC) is 1850-1900, I adjust the NOAA series
by rescaling them accordingly.

A.1.2 Climate change drivers

I consider nine drivers of climate change: CO2, methane (CH4), nitrous oxide (N20), chlo-
rofluorocarbons (CFC11 and CFC12), anthropogenic sulfur emissions (SOx), El Nino and
La Nina (El Nifo-Southern Oscillation, henceforth ENSO), solar irradiance, and volcanic
activity. In line with both the climate science literature, and the literature on the econo-
metrics of climate change, I convert (as detailed below) each CCD into ‘Radiative Forcing’
(RF), which provides a precise numerical measure, expressed in Watts per square meter
(Watts/m?), of the ability of individual CCDs to trap heat in the atmosphere. As it is
standard in the literature, I do this based on formulas from physics (see below).

Starting from anthropogenic climate change drivers (CCDs), data sources are as follows.
As for CO2, data before 1958 have been spline-interpolated based on the data retrieved from
the Scripps CO2 Program (at http://scrippsco2.ucsd.edu ). Since 1958, data are based on
direct measurements from the Mauna Loa observatory. As for CH4, until 1997 data are from
Robertson at el. (2001). Since then they are from NOAA. As for N20, until 2017 data are
from https://www.n2olevels.org/. Since then they are from NOAA. The concentrations of

*Department of Economics, University of Bern, Schanzeneckstrasse 1, CH-3001, Bern, Switzerland. Email:
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CO2, CH4, and N20 in the atmosphere have been converted into radiative forcing based
on the formulas found in Table 1 of Butler and Montzka (2018).

Data on the radiative forcing of chlorofluorocarbons (CFC11 and CFC12) are from Stern
and Kaufmann (2014), and they have been updated based on data from NOAA and the
formulas for radiative forcing found in Stern and Kaufmann (2000, p. 435).

A series for the radiative forcing of anthropogenic sulfur emissions (SOx) is from Stern
and Kaufmann (2014), and it has been updated based on data from the OECD and the
formulas for radiative forcing found in Stern and Kaufmann (2000, p. 435).

Turning to non anthropogenic drivers of climate change, data on solar irradiance are from
Coddington et al. (2015) and Kopp et al. (2016) until 2014. Since then they are from the
SORCE Total Irradiance Monitor (TIM).! T convert the resulting index of solar irradiance
into radiative forcing based on the formula found on p. 435 of Stern and Kaufmann (2000),
which in turn is based on the IPCC (see Shine et al. 1991). Since solar irradiance features
an 11-years cycle which is irrelevant for the present purposes, I remove it via the band-pass
filter proposed by Christiano and Fitzgerald (2003).2 An index of volcanic forcing (i.e.,
radiative forcing originating from volcanic eruptions) is from Dergiades et al. (2016) until
1979. After that it is from Schmidt et al. (2016) and from the updated dataset of Schallock
et al. (2023). Finally, the radiative forcing of El Nino and La Nina (El Nifno-Southern
Oscillation, henceforth ENSO) is from Dergiades, Kaufmann, and Panagiotidis (2016) until
2011, and it has been updated based on data from NOAA.

A.1.3 World real GDP

Annual data for world real GDP since 1850 are from sfu.ca/~djacks/data/publications/index.html
until 1980. Since then, they have been reconstructed based on the annual growth rates from
the International Monetary Fund’s World Economic Outlook database.

A.1.4 World sea level

An annual series for the world sea level since 1801 has been constructed as follows. Since
1880, data are from the U.S. Environmental Protection Agency’s (EPA) Climate Change
Indicators (see at: www.epa.gov /climate-indicators). Between 1870 and 1880 data are from
Church and White (2006). Finally, for the period 1801-1869 I proceed as follows. Annual
sea level data for Amsterdam, Brest, and Stockholm are available since 1766, 1711, and
1801 respectively, but for each series a few years are missing. For the period 1874-1923, for
which both the world sea level series and any of the series for three cities are all available,
I run an OLS regression of the world sea level series on a constant and the sea level series
for Amsterdam, Brest, and Stockholm. Finally, I compute a world sea level proxy for the
period 1801-1871 as the predicted value which is obtained by applying the coefficients from
OLS regression to the actual values for the three cities’ sea level for that period. The overall
annual sea level series has been obtained by linking the three previously described series.
Specifically, it is equal to the just-mentioned proxy for the period 1801-1869, to the series

'Details of the TIM design and calibrations are given in Kopp and Lawrence (2005) and Kopp et al.
(2005).

2Specifically, since I am working at the annual frequency, I remove the frequency band associated with
fluctuations between 10 and 12 years.



from Church and White (2006) for the period 1870-1879, and to the EPA series since 1880.
The series is expressed in centimeters.

A.1.5 Ice cover in the Northern emisphere

An annual series for ice cover in the Northern emisphere (in square kilometers) if from NOAA
(at https://www.ncei.noaa.gov/access/monitoring/snow-and-ice-extent /sea-ice /N/0) since
1979. Before that it is from Walsh, Chapman, Fetterer, and Stewart (2019).

A.2 Linking data based on regular measurements with interpolated data
based on irregular observations

For three climate change drivers—CO2, NH4, and N20—I link spline-interpolated series
based on #rregular observations with series based on regular direct measurements. One
obvious concern with doing this is that the two types of data that are being linked are not
exactly comparable, and performing econometrics based on the resulting linked series may
therefore produce unreliable results. As it is routinely done in the climate science literature,
for either CO2, NH4, or N20 I therefore address this issue as follows.

To fix ideas, let us focus on CO2 (the logic for NH4 and N2O is the same). The
spline-interpolated series based on data from the Scripps CO2 program is available until
2018, whereas the series based on direct measurements from the Mauna Loa observatory
is available since 1958. Over the common sample period, 1958-2018, I estimate an AR(1)
process for the difference between the two series. Then, based on standard resampling
methods, I bootstrap (i.e., stochastically simulate) the estimated AR(1) process for a sample
equal to the length of the sample for the spline-interpolated data (i.e. 1850-2018) and I add
it to the spline-interpolated series. In this way I obtain for the 1850-2018 period a series
that mimics the stochastic properties of the series based on direct measurement from Mauna
Loa for the period since 1958. (This is what in the climate science literature is labelled as
‘adding red noise’ to an interpolated series.) Finally, I construct the linked series for the
overall period 1850-2023 by linking the thus constructed, partially simulated series (until
1957) and the Mauna Loa series (since 1958). For NH4 and N2O I proceed in the same way.

By construction, over the first part of the sample period the linked series for CO2,
NH4, and N20 are random, as they depend on the specific realizations of the bootstrapped
red noise processes. (In Section A.5 below I discuss how I address this issue via Monte
Carlo integration, by integrating out the randomness originating from the bootstrapped
red noise processes.) It is to be stressed, however, that because of the comparatively small
magnitude of the estimated red noise compared to the levels of the series, the difference
between individual stochastic simulations is very small.? This means that, in practice, what
is shown in Figure 1 in the main text of the paper is representative of the entire universe of
simulations. Figure A.1 provides simple evidence on this. The figure shows, for CO2, NH4,
and N20, the maximum and the minimum among the sorted partially simulated paths out
of 100,000 simulations, together with the difference between them. Evidence is very clear:
over the first portions of the sample the simulated paths had been very close. This had
especially been the case for CH4, and just slighty less so for CO2 and N20.

3Then, for either CO2, NH4, or N20 the second part of the respective samples, being based on direct
regular measurements, is by definition the same.



A.3 Construction of the aggregate Joint Radiative Forcing index

Once each driver of climate change has been converted into radiative forcing, I construct the
aggregate Joint Radiative Forcing (JRF) index as in Kaufmann, Kauppi, and Stock (2006)
by summing up the individual components. As shown by Kaufmann, Kauppi, and Stock
(2006, see Table IT and the discussion on page 261), it is indeed not possible to reject the
null hypothesis that ‘the temperature effect of a unit of radiative forcing (e.g. W/m?) is
equal across forcings’. The single exception is ENSO, which I ignore for the reasons I discuss
in the next sub-section.

A.4 Why excluding El Nino and La Nina

Figure A.2 shows the radiative forcing of El Nifio and La Nina (ENSO), together with its
estimated normalized spectral density with 90%-coverage bootstrapped confidence bands.*
Two main findings are apparent from the figure:

(1) the radiative forcing of ENSO is extraordinarily noisy compared to the radiative
forcing of the other drivers of climate change. For example in Figure 1 in the main text
of the paper the radiative forcing of the dominant driver of climate change, CO2, goes
from zero (by normalization) in 1850 to slightly beyond 2 in 2023. By contrast, the ENSO
radiative forcing in Figure A.2 has a standard deviation of 1.0742, and since 1850 it has
oscillated from a minimum of -2.69 to a maximum of 2.37.

(2) As the second panel of Figure A.2 clearly illustrates, ENSO’s radiative forcing has
essentially no spectral power at frequencies beyond 25 years.

The implication of (1) and (2) is that, for the present purposes, including in the JRF
index the radiative forcing of ENSO shown in the first panel of Figure A.2 would uniquely
add a large amount of comparatively high-frequency noise, whereas it would bring essentially
no information about the long-horizon, low-frequency developements that are the focus of
the present work. To put it differently, this would uniquely complicate the analysis, whereas
it would not bring any benefit whatsoever. Because of this, in the construction of the JRF
index I have decided to ignore the El Nino and La Nifia phenomenon.

A.5 Integrating out simulated red noise via Monte Carlo integration

As discussed, over the first part of the sample period the linked series for CO2, NH4, and
N20 are random, as they depend on the specific realizations of the bootstrapped red noise
processes. 1 therefore address this issue as follows.

For k =1, 2, 3, ..., K, with K = 1,000, I generate partially simulated® series for the
concentration of CO2, NH4, and N20O in the atmosphere, I convert them into radiative
forcing, and I sum them to the radiative forcings of the remaining drivers of climate change,
thus obtaining a partially simulated series for the JRF index. Based on this and on the series
for the temperature anomalies (which are based on regular direct observations over the entire

41 estimate the spectral density by smoothing in the frequency domain the Fast-Fourier-Transform (FFT)-
based estimator of the series’ periodogram via a Bartlett spectral window. The bandwidth is selected au-
tomatically via the procedure proposed by Beltrao and Bloomfield (1987). Spectral bootstrapping is imple-
mented via the procedure proposed by Franke and Hardle (1992). I implement 10,000 bootstrap replications.

’Based on the previous discussion, ‘partially simulated’ refers to the first part of the sample, for which
we only have spline-interpolated data.



sample period) I then estimate the VARs, and I compute the median, and the 16-84 and
5-95 percentiles for all of the objects if interest (impulse-response functions to a permanent
shock to the level of JRF; unconditional and conditional forecasts; etc.). Finally, I integrate
out the uncertainty deriving from the fact that for CO2, NH4, and N20O the first part of
the sample has been partially simulated by computing the average (corresponding to the
expected value) of the objects of interest across all of the K simulations. This Monte Carlo
integration procedure allows to perform the empirical analysis by effectively controlling for
the fact that three of the radiative forcing series have been partially stochastically simulated.

B Statistical Properties of the Data

B.1 Unit root tests

Tables B.1a-B.1b show bootstrapped p-values for Elliot, Rothenberg, and Stock’s (1996)
unit root tests for both the levels and the first differences of climate change series. For all
series except the JRF index we have data based on continuous direct measurements for the
entire sample since 1850. For these series I therefore perform the tests in the standard way,
bootstrapping them as in Diebold and Chen (1996) based on the first difference of the series
that is being tested, i.e., either the (log) level or the (log) difference of the original series. I
consider five possible lag orders, from 1 to 5 years.

Table B.1a Bootstrapped p-values for Elliot, Rothenberg, and Stock’s
(1996) unit root tests for the anthropogenic radiative forcing index®
p=1 p=2 p=3 p=4 p=H
Mean of Monte Carlo
distribution of p-values
In levels, without a time trend 1.0000 1.0000 1.0000 1.0000 1.0000
In levels, with a time trend 0.9995 0.9994 0.9992 0.9997 0.9999
In first differences, without time trend | 0.0001 0.0032 0.0379 0.1313 0.3018
Median of Monte Carlo
distribution of p-values
In levels, without a time trend 1.0000 1.0000 1.0000 1.0000 1.0000
In levels, with a time trend 0.9995 0.9995 0.9995 1.0000 1.0000
In first differences, without time trend | 0.0000 0.0030 0.0375 0.1305 0.3010
Fraction of Monte Carlo distribution

of p-values smaller than 10 per cent

In levels, without a time trend 0.0000  0.0000 0.0000 0.0000 0.0000
In levels, with a time trend 0.0000  0.0000 0.0000 0.0000 0.0000
In first differences, without time trend | 1.0000 1.0000 1.0000 0.0425 0.0000
¢ Based on10,000 Monte Carlo simulations of joint radiative forcing.

For the JRF index, on the other hand, I generate 10,000 partially simulated series as
described in Appendix A.5, and based on each of them I perform the same unit root tests
I perform for the other series. Table B.1la reports the means and the medians of the Monte
Carlo distributions of the bootstrapped p-values across the 10,000 simulations, together
with the fraction of Monte Carlo replications for which the p-values are smaller than 10%.



Table B.1b Bootstrapped p-values for Elliot, Rothenberg, and Stock’s
(1996) unit root tests for the land and ocean temperature anomalies

p=1  p=2 p=3 p=4 p=>
Land temperature anomaly
In levels, without time trend 0.6824 0.9052 0.9750 0.9904 0.9940
In levels, with time trend 0.1526  0.3048 0.7162 0.7180 0.7308

In first differences, without time trend | 0.0000 0.0000 0.0000 0.0000 0.0000

Ocean temperature anomaly

In levels, without time trend 0.4682 0.7256 0.9120 0.9296 0.9588
In levels, with time trend 0.1278 0.4878 0.5440 0.5558 0.6766
In first differences, without time trend | 0.0000 0.0000 0.0000 0.0000 0.0000

Owverall temperature anomaly

In levels, without time trend 0.8651 0.9704 0.9926 0.9930 0.9971
In levels, with time trend 0.3687 0.6454 0.7757 0.6099 0.7826
In first differences, without time trend | 0.0000 0.0000 0.0000 0.0000 0.0001

Log real GDP

In levels, without time trend 0.9891 0.9878 0.9877 0.9707 0.9594
In levels, with time trend 0.0534 0.3759 0.3079 0.3488 0.3919
In first differences, without time trend | 0.0000 0.0009 0.0009 0.0009 0.0009

Volcanic radiative forcing

In levels, without time trend 0.0000 0.0000 0.0000 0.0004 0.0035
controlling for break in the mean | 0.0000 0.0000 0.0000 0.0000 0.0005

Solar radiative forcing

In levels, without time trend 0.2665 0.3437 0.4992 0.5889 0.6648

In levels, with time trend 0.0147 0.0195 0.0516 0.0837 0.2282

In first differences, without time trend | 0.0000 0.0000 0.0000 0.0001 0.0000
Ice cover

In levels, without time trend 0.0000 0.0028 0.0258 0.1489 0.3495

In levels, with time trend 0.0000 0.0000 0.0003 0.0214 0.0656

In first differences, without time trend | 0.0000 0.0000 0.0000 0.0000 0.0002
Sea level

In levels, without time trend 0.9872 0.9925 0.9955 0.9962 0.9999

In levels, with time trend 0.9559 0.8853 0.9317 0.9129 0.9367

In first differences, without time trend | 0.0009 0.0173 0.1146 0.2712 0.4303




For all series except volcanic RF the null of a unit root cannot be rejected in levels,
either including or not including a time trend, and based on any of the five lag orders. The
only exception is ice cover, for which a unit root is rejected when including a time trend.
Since the most plausible alternative is a model not including a time trend,® in what follows
I downplay these results, and I assume that ice cover, too, feature a unit root. For volcanic
RF rejection of the null is very strong, either not controlling or controlling for the break in
the mean in 1961 identified by Bai-Perron tests.

In differences a unit root is strongly rejected for all series except the JRF index and the
sea level. For the JRF index it is rejected at the 10 per cent level only for lag orders smaller
than or equal to 3, whereas for the sea level it is rejected only for lag orders smaller than
or equal to 2.

Based on the evidence in Tables B.1a-B.1b a reasonable characterization of the data,
which has in fact been adopted by the vast majority of cointegration-based studies on
climate change (see the discussion Sections 1.1 and 1.2.2 in the main text of the paper),
is that all of the series are I(1). As the evidence in the next sub-section shows, however,
this conclusion would most likely be incorrect, since Stock and Watson’s (1996, 1998) tests
applied to the first differences of the series strongly suggest that they all contain a random-
walk component.

B.2 Searching for random-walk time-variation in the first differences of
the series

Table B.2 report evidence from Stock and Watson’s (1996, 1998) tests of the null hypothesis
of no time-variation in the mean of the first difference of any of the series, against the
alternative of random-walk time variation. For volcanic radiative forcing I control for the
break in the mean in 1961 identified by Bai-Perron tests. In implementing Stock and
Watson’s approach I closely follow Stock and Watson (1996, 1998). The methodology is
described in detail in Appendix C, and it is exactly the same I used in Benati (2007). I
consider three alternative values of ‘trimming’, i.e. the standard 15% and, in order to give
more power to the tests, either 25% or 33%. I control for the possible autocorrelation
and/or heteroskedasticity of the residuals via either Newey and West’s (1987) or Andrews’
(1991) covariance matrix estimator. For all series except the JRF index I simply report the
simulated p-values produced by Stock and Watson’s methodology. For the JRF index I
report the mean and the median of the Monte Carlo distribution of the simulated p-values,
together with the fraction of the p-values smaller than 10%, across 10,000 Monte Carlo
simulations.

For both volcanic and solar radiative forcing the null of time invariance in the mean
of the first difference of the series cannot be rejected, with p-values ranging between 0.22
and 0.915. For the ice cover index evidence is mixed, with three p-values out of six smaller
than 10 per cent. For all other series I consistently detect strong evidence of random-walk
time-variation. This suggests that although for these series the I(1) component is too small
to be detected based on standard unit root tests, in fact it is sufficiently large to be detected
based on the approach proposed by Stock and Watson (1996, 1998).

I now turn to cointegration tests.

®The reason being that it is not clear why storms should depend on calendar time.



Table B.2 Simulated p-values for Stock and Watson’s tests for the null of time-invariance against the
alternative of random-walk time-variation in the mean of the first differences” of the series

Radiative forcing:

anthropogenic? Log Sea Temperature
Fraction | volcanic® | solar | real | level | Storms anomalies:

HAC correction: Mean  Median  below 10% GDP overall land  ocean
Trimming: 0.15

Newey and West (1987) | 0.0448  0.0148 0.8590 0.226 0.785 | 0.045 | 0.005 | 0.112 | 0.0004 0.000 0.049

Andrews (1991) 0.0531  0.0209 0.8590 0.348 0.874 | 0.063 | 0.008 | 0.071 | 0.0004 0.000 0.112
Trimming: 0.25

Newey and West (1987) | 0.0409  0.0120 0.8480 0.892 0.784 | 0.027 | 0.006 | 0.195 | 0.0006 0.001 0.041

Andrews (1991) 0.0480 0.0171 0.8480 0.922 0.871 | 0.041 | 0.011 | 0.135 | 0.0006 0.000 0.088
Trimming: 0.33

Newey and West (1987) | 0.0754  0.0488 0.7740 0.779 0.779 | 0.022 | 0.008 | 0.241 | 0.0004 0.003 0.044

Andrews (1991) 0.0864  0.0591 0.7700 0.813 0.854 | 0.032 | 0.014 | 0.184 | 0.0004 0.001 0.094

@ For volcanic radiative forcing the level, controlling for the identified break in the mean.
b Mean and median of the Monte Carlo distribution of p-values, and fraction of p-values smaller than 10%.




B.3 Evidence from Wright’s (2000) cointegration tests

[ start from tests of cointegration between the JRF index and temperature anomalies. Based
on the climate science literature, the relevant null hypothesis is that the level of the JRF
index is cointegrated with the levels of temperature anomalies, so that even if all the series
are 1(2), the residual from the cointegrating regressions

Tt :a+bJRFt+ut, (Bl)

where T; is one of the temperature anomalies, is 1(0). I therefore proceed as follows.

To fix ideas, let us focus on the land temperature anomaly. I start by generating, as
previously described, 1,000 partially simulated series for the JRF index, JRE}, with j = 1,
2, ..., 1,000. Then, '

(1) based on each pair {JRF}, T4}, j =1, 2, ..., 1,000, I perform a Wright (2000)
test for the null hypothesis of cointegration between JRF} and TFd, When the null is
not rejected, this produces a confidence interval for the cointegration coefficient.

(2) Based on JRE}, for j =1, 2, ..., 1,000, and the other climate change series I
estimate the model discussed in Section 4 in the main text. For each j = 1, 2, ..., 1,000, this
produces d = 1, 2, ..., 1,000 draws from the posterior distribution of the estimated model.

(3) For each j =1, 2, ..., 1,000, I then stochastically simulate each of the 1,000 d models
(i.e. draws from the posterior), and based on these artificial data I perform the same test
I performed in (1), thus building up a Monte Carlo distribution of Wright’s (2000) test
under the null hypothesis that the series are cointegrated in levels. In all cases in which the
null is not rejected, this produces a corresponding confidence interval for the cointegration
coefficient.

Evidence of cointegration is typically detected very strongly across the board between
(7) the JRF index and the temperature anomaly; (i) the level (not the logarithm) of real
GDP and the first difference of anthropogenic RF; (iii) the temperature anomaly and either
sea level or ice cover.

In particular, for either the land or the ocean temperature anomaly Wright’s (2000)
tests cannot reject the null hypothesis of cointegration for any j = 1, 2, ..., 1,000. Finally,
as discussed in Section A.5 I integrate out the randomness associated with the simulated
red noise I have added to the JRF index over the first part of the sample by computing the
average, across all j’s, of the confidence intervals for the cointegration coefficient.

The average across the 1,000 simulations of the 90%-coverage confidence interval for the
cointegration coefficient for the land anomaly is [-0.95 -0.60], whereas the corresponding
object for the ocean anomaly it is [-2.24 -1.45], reflecting the significantly slower rate of
warming of the oceans over the sample period. It is to be noticed that the confidence inter-
vals for the land and ocean anomalies are not overlapping. Taken at face value this would
imply that the land and ocean anomalies, although both cointegrated with the JRF index,
exhibit different long-run equilibrium relationships with it. Another possible interpreta-
tion is that, in response to a permanent increase in the JRF index, the two temperature
anomalies ultimately increase by exactly the same amount, so that they share the same
cointegration vector with the JRF, but that the sample period since 1850 is simply too
short to capture this. As I discuss in the main text of the paper, climate science suggests
that the former interpretation is significantly more plausible, and that in a long-run equi-



librium the land and the ocean exhibit different responses to a permanent increase in the
JRF.

C Stock and Watson’s (1996, 1998) Methodology for Search-
ing for Random-Walk Time-Variation

In Appendix B.2 I test the null hypothesis of no time-variation in the mean of the first
difference of climate change series against the alternative of random-walk time variation,
based on Stock and Watson’s (1996, 1998) TVP-MUB methodology applied to the AR(p)
model

Yo =+ D11+ Gali—2 + oo+ Oplip +us = 02 + g (C.1)

where 1 is the first difference of any of the series. I select the lag order, p, as the maxi-
mum among the lag orders selected by the Akaike and Schwartz information criteria, for a
maximum possible number of lags P=20 years. In implementing the TVP-MUB method-
ology I closely follow Stock and Watson (1996, 1998). Letting 0;=[u;, @14, -y @p4'; the
time-varying parameters version of (C.1) is given by:

Yt = Gézt + Uy (02)

et = et_]_ + nt (03)

with 7, 7id N (0,41, A20%Q), with 0,,1 being a (p+1)-dimensional vector of zeros; o> being
the variance of u; @) being a covariance matrix; and E[n,u;]=0. Following Nyblom (1989)
and Stock and Watson (1996, 1998), I set Q=[E(zz,)]~!. Under such a normalisation,
the coefficients on the transformed regressors, [E(z;:2})]~ /22, evolve according to a (p+1)-
dimensional standard random walk, with A\? being the ratio between the variance of each
‘transformed innovation’ and the variance of w;.”

The point of departure is the OLS estimate of 6 in (C.1), @OLS. Conditional on 90L5 I
compute the residuals, @, and the estimate of the innovation variance, 62, and I perform
an exp-Wald test for a single break in the mean of gy, at an unknown point the sample as
n (e.g.) Bai and Perron (1998, 2003) by regressing y; on a constant, using either Newey
and West’s (1987) or Andrews’ (1991) covariance matrix estimator to control for possible
autocorrelation and/or heteroskedasticity in the residuals. I estimate the matrix @ as in
Stock and Watson (1996) as :

O—

T
—1 /
T g 212
t=1

I consider a 50-point grid of values for A over the interval [0, 0.15], which I call ]} For each
Aj € AT compute th? corresponding estimate of the covariance matrix of 7, as Qj:)\]szgQ,
and conditional on @; I simulate model (C.2)-(C.3) 10,000 times as in Stock and Watson
(1996, section 2.4), drawing the pseudo innovations from pseudo random iid N (0, &%).
For each simulation, I compute an exp-Wald test (obviously, without however applying the

"To be precise, given that the Stock-Watson methodology is based on local-to-unity asymptotics, X is
actually equal to the ratio between 7, a small number which is fixed in each sample, and 7', the sample
length.



HAC correction) thus building up its empirical distribution conditional on \;. Based on the
empirical distributions of the test statistic I then compute the median-unbiased estimate of
A as that particular value of A\; which is closest to the statistic I previously computed based
on the actual data. I compute the p-value based on the empirical distribution of the test
conditional on A\;=0. Finally, for reasons of robustness I consider three alternative values
of trimming, 15, 25, and 33 per cent.

D The Metropolis-Within-Gibbs Estimation Algorithm

As mentioned in the main text, I estimate the model via Bayesian methods, based on a
straightforward adaptation to the problem at hand of the Metropolis-within-Gibbs algo-
rithm proposed by Justiniano and Primiceri (2008) to estimate DSGE models with stochas-
tic volatility. Justiniano and Primiceri’s (2008) algorithm (see their Appendix A) consisted
of two ‘blocks’ of steps. In Block I the stochastic volatilities of the structural shocks, as
well as their hyper-parameters, were drawn conditional on the parameters of the DSGE
models via a Gibbs step. In Block II a Metropolis step was used in order to draw the DSGE
model’s parameters conditional on the stochastic volatilities. Within the present context
in Block I the only difference with Justiniano and Primiceri (2008) is that I use a simpler
specification for the stochastic volatilities. Instead of using their mixture of distributions,
in line with e.g. Cogley and Sargent (2005) I postulate that any of the volatilities of the
structural innovations evolves as in Jacquier, Polson, and Rossi (2002). As for Block II,
instead of drawing the parameters of the DSGE models I obviously draw the parameters of
the VAR, again via a Metropolis step.

D.1 Modelling the stochastic volatilities

Entering into details, the time-varying covariance matrix of the VAR’s reduced-form in-
novations u; = Age;, where Ag and €; are the same as in equation (9) in the main text,
is factored as € = AgHA{, where H; is a diagonal matrix with the volatilities of the
individual structural shocks €; on the diagonal, i.e.

hig. 0 .. 0
o = 0 hoy ... O (D.1)
00 . hy
The h;’s are postulated to evolve as geometric random walks, i.e.
Inhiy =Inh;; 1+ (D.2)
For future reference, I define hy = [hay, hay, ..., Ani's ve = Vi, Vag, ..., v, and B = [By,

By, ..., Bp|, where By, Bs, ..., B, are the VAR matrices in equation (9) in the main text. I
assume that ¢, ~ N (0, H;) and v4 ~ N (0, Z), with

o2 0 .. 0
2
0 0 o3



Finally, I assume that ¢; and vy are orthogonal both contemporaneously, and at all leads
and lags.

D.2 Priors

The prior distribution for the initial values of the stochastic volatilities, the hg’s, is pos-
tulated to be normal, and it is assumed to be independent from the distribution of the
hyperparameters. I calibrate the prior distribution for hg as

In hz'70 ~ N(—5, 10) (D4)

The large variance, 10, insures that the prior is very weakly informative. Finally, for the
variances of the stochastic volatility innovations I follow Cogley and Sargent (2005) and I
postulate an inverse-Gamma distribution for the elements of 7,

1074 1
2 [— —
o IG< 5 ,2> (D.5)

D.3 Simulating the posterior distribution

Conditional on the data, I simulate the posterior distribution of the VAR, parameters, the
hyperparameters, and the stochastic volatilities via the following Metropolis-within-Gibbs
algorithm. In what follows, 2! denotes the entire history of the vector = up to time t—i.e.
zt = [2), b, , z}]'—while T is the sample length. At iteration i the algorithm proceeds
as follows:

(a) drawing the elements of H; Conditional on Y7 (i.e., the entire data sample) and
the VAR’s parameters 3, the structural shocks ¢; = Ay Ly, where u; are the VAR’s reduced-
form residuals, with Var(e;)=H;, are observable. Following (Cogley and Sargent, 2005), I
then sample the h;;’s by applying the univariate algorithm of Jacquier, Polson, and Rossi
(2004) element by element.®

(b) Drawing the hyperparameters Conditional on Y7, 3, and hit’s, the innovations to
the h;+’s are observable, which allows to draw the hyperparameters (i.e. the 02) from their
respective distributions.

(¢) Drawing the VAR’s parameters Conditional on Y and the h;’s, I draw the VAR'’s
parameters via a Metropolis step. Specifically, a new candidate parameter §* is drawn
from a proposal density based on the likelihood of the VAR’s parameters conditional on the
data and the stochastic volatilities drawn in step (a). The candidate draw is accepted with
probability

L(YT|5", H)m(5")
L(YTWZ'—l?Hz‘T)Tr(IBi—l)

where L(Y7|3,_;, HI') is the likelihood of the data conditional on (1) the VAR’s parameters’
draw at iteration -1 (i.e., 3;_1), and (2) the stochastic volatilities at iteration i previously
drawn in nstep (a); L(YT|3*, H!') is the corresponding likelihood of the data conditional
on the candidate draw 5%, instead pf 5,_;; and 7(8*) and 7(3;_;) are the prior densities of

B and B;_;.

In fact T use Cogley and Sargent’s (2005) MATLAB codes, which were kindly provided by Tim Cogley.

r = min |1; (D.6)
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Conditional on the data, the algorithm simulates the posterior distribution of the VAR
parameters, the hyperparameters, and the stochastic volatilities by iterating on (a)-(c).

I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate
10,000,000 draws, which I ‘thin’ by sampling every 1,000 draws in order to reduce their
autocorrelation. This leaves 10,000 draws from the ergodic distribution which I use for
inference. For all models the fraction of accepted draws is very close to the ideal one, in
high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995). I check convergence
of the Markov chain based on Geweke’s (1992) inefficiency factors (IFs) of the draws from
the ergodic distribution for each individual parameter. For all parameters the [Fs are equal
to at most 3-4, well below the values of 20-25 which are typically taken to indicate problems
in the convergence of the Markov chain.
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