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provide a general characterization of the properties of latent variables that can be
detected using response time data. Our characterization generalizes various results in
the literature, helps to solve identification problems of binary response models, and
paves the way for many new applications. We apply the result to test the hypothesis
that marginal happiness is decreasing in income, a principle that is commonly accepted
but so far not established empirically.
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1 Introduction

Traditionally, economists have ignored choice process data like response times. Only recently
has the literature realized that response times can contain valuable information about eco-
nomically relevant but unobserved variables like, among others, willingness to pay or accept
(Krajbich et al., 2012; Cotet and Krajbich, 2021), preference intensity (Chabris et al., 2009;
Alós-Ferrer, Fehr and Netzer, 2021; Alós-Ferrer and Garagnani, 2022), product quality (Card
et al., 2024), or happiness (Liu and Netzer, 2023).

In this paper, we take a systematic approach to study what information response times
contain. We do this in the context of a canonical binary response model, which has been
used extensively in the economics literature and is applicable to all the settings described
above. The model posits that an unobservable latent variable generates binary choices. The
common observation in the aforementioned strands of literature is that decisions are faster
when the value of the latent variable is larger. The observable response times are therefore
informative about the unobservable latent variable.

We phrase our question as one about the identification of the binary response model. The
existing econometrics literature has studied questions along this line using assumptions on
the distribution of the latent variable and exogenous variation of observables (e.g., Manski,
1988; Matzkin, 1992). We take a complementary approach and study the identification of
distributional properties using response time data. This allows us to circumvent controversial
assumptions and to solve identification problems noted in the literature (e.g., Haile, Hor-
taçsu and Kosenok, 2008; Bond and Lang, 2019). We provide a full characterization of the
distributional properties of latent variables that can be detected with the help of response
time data, depending on the assumptions an analyst is willing to make about the relation
between the latent variable and response time.

The approach that we adopt is more general than the existing literature. In the context
of stochastic choice, Alós-Ferrer, Fehr and Netzer (2021) have shown that response time
data can be used to obtain revealed preferences without making distributional assumptions
about the random utility component and to improve out-of-sample predictions. Several of
their results follow as immediate corollaries from our characterization. We then generalize
these results, for example allowing for additional individual heterogeneity and dispensing
with unnecessary symmetry assumptions. In the context of happiness surveys, Liu and
Netzer (2023) have shown that response time data can help to solve identification problems
of ordered response models. Once more, our approach yields several of their results as
corollaries and allows for further generalization.

Our approach paves the way for a range of new applications. Here, we briefly highlight

1



three, each of which will be discussed in greater detail in the theoretical part of the paper.
First, we show how to detect polarization of political attitudes (Lelkes, 2016) from simple
ordinal survey questions. This task would be difficult, if not impossible, without response
times (Vaeth, 2023). Second, we demonstrate how to infer properties of demand functions
that are important for the optimal pricing of firms (Johnson and Myatt, 2006) from observed
purchase decisions at a single price. Third, we show how to uncover correlational patterns
that are not directly observable to an analyst because subjects’ responses may be distorted
when they conflict with authoritarian governments or social norms (Coffman, Coffman and
Ericson, 2017; Guriev and Treisman, 2020).

Our theoretical results make it possible to tackle long-standing empirical challenges and
debates in the economics literature. We showcase this potential by applying the results to
test the hypothesis of decreasing marginal happiness of income, a principle that is central to
redistributive policies. Oswald (2008) and Kaiser and Oswald (2022) question the empirical
foundation of this principle by arguing that an observed concave relationship between income
and self-reported happiness may result from a concave reporting function rather than from
decreasing marginal happiness. Conventional approaches used in the happiness literature
are insufficient to establish the principle (Bond and Lang, 2019). In the empirical part
of the paper, we show that the principle becomes testable with our response time-based
method. Our analysis of existing survey data reveals that the hypothesis of decreasing
marginal happiness cannot be rejected.

The central assumption underpinning our analysis is the so-called chronometric function
that associates each choice with a response time. This function is monotone, in the sense
that a larger absolute value of the latent variable generate a faster decision, possibly after
controlling for individual heterogeneity. From a theoretical perspective, such a monotone
relationship emerges naturally in evidence-accumulation models (see, e.g., Chabris et al.,
2009; Fudenberg, Strack and Strzalecki, 2018; Card et al., 2024), where a stronger stimulus
generates faster decisions. The empirical evidence for a monotone chronometric function
in the laboratory is vast. For example, and among many others, Kellogg (1931), Moyer
and Bayer (1976), and Palmer, Huk and Shadlen (2005) document the effect for choice
situations with an objective stimulus, and Moffatt (2005), Chabris et al. (2009), Konovalov
and Krajbich (2019), and Alós-Ferrer and Garagnani (2022) for value-based environments.
Field evidence is also emerging. Card et al. (2024) document that editorial decisions take
longer when the submitted paper’s quality implies a closer decision. Using eBay data on
bargaining behavior, Cotet and Krajbich (2021) show that sellers’ response times to an
offer systematically depend on its perceived value. In the context of an online survey, Liu
and Netzer (2023) demonstrate that faster responses are associated with a stronger sense of
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approval for the selected answer. The consistent support across diverse settings and studies
underscores the validity and robustness of the chronometric effect as modeled in our work.

To gain a more concrete idea of our main insight, consider a standard decision-making
environment where one or multiple agents choose between two options. Choice is determined
by the realization x of an unobservable latent variable, with x ≤ 0 generating choice of option
a and x > 0 generating choice of option b. An analyst observing the choices naturally wonders
what can be learned about the underlying binary response model, and in particular about the
cumulative distribution function G of the latent variable, from those data. Unfortunately,
the only property of G that is identified without additional assumptions or data is its value
at zero, G(0), which is given by the observed probability or frequency of choosing a. This
information is extremely limited and does, for example, not imply anything about the mean
of G without additional distributional assumptions. Now suppose that the speed of the
decision is given by c(|x|) for a strictly decreasing chronometric function c, assumed here
to be identical for both choice options and all agents just for easy of exposition. Since a
choice of a arises at time t or earlier if x is sufficiently far below 0, where “sufficiently far” is
determined by the chronometric function, the observed probability or frequency of choosing
a at time t or earlier pins down the value of G(−c−1(t)), and analogous for choices of b.
Observing the joint distribution of responses and response times therefore allows the analyst
to identify a composition of the distribution G and the chronometric function c.

Consequently, if the analyst had perfect knowledge of the chronometric function linking
values to response times, she could recover the entire latent distribution from the data.
However, such detailed knowledge is not necessary for inferring only specific distributional
properties. Our main result fully characterizes which properties (or their violation) can be
detected under which assumptions on the chronometric function. For example, detecting
properties that are preserved under monotone transformations requires only knowledge of
monotonicity of the chronometric function. This includes properties such as full support or,
because our approach allows for settings with multiple latent variables, first-order stochastic
dominance between distributions (as in Liu and Netzer, 2023). Knowing more about the
chronometric function beyond its monotonicity enables the detection of a broader class of
properties. For example, if we restrict attention to chronometric functions that are identical
for both choice options, as in the above illustration, then we can detect properties that are
preserved under symmetric monotone transformations. This includes sufficient conditions
for the mean of a distribution to be positive (as in Alós-Ferrer, Fehr and Netzer, 2021) and
for the ranking of the means of multiple distributions (as in Liu and Netzer, 2020).

Our main result also provides a simple recipe how to detect or reject any property of
interest. It involves constructing a candidate distribution based on the empirical data using
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a representative chronometric function that the analyst deems possible. Then, if the property
of interest holds for this candidate distribution, it must hold for all chronometric functions
that can be obtained from the representative one using any transformation under which the
property is preserved. An analogous statement applies when the property is violated. We
also discuss an extension that combines this approach with direct distributional assumptions
and we provide necessary and sufficient conditions for rationalizability of response time data
in this scenario.

The generality of our approach lends itself to a wide range of applications. When applied
to a single distribution, it enables the detection of properties such as the sign of the mean,
inequality, and unimodality. These properties play important roles in the context of revealed
preference theory, optimal pricing, and political analysis. For multiple distributions, we can
detect first-order stochastic dominance, the ranking of means, likelihood-ratio dominance,
and correlations with observable variables. These properties matter for the analysis of survey
data, out-of-sample prediction of behavior, and monotone comparative statics.

The paper is organized as follows. Section 2 introduces the formal framework and presents
the main result, along with two extensions. Section 3 applies the main result and derives
theoretical conditions for detecting the various distributional properties of interest discussed
above. Section 4 uses several of these results to empirically test the hypothesis that marginal
happiness is decreasing in income. Section 5 concludes. Additional material can be found in
the Appendix.

2 General Theory

In this section, we develop our general theoretical framework and present our main result,
which shows how and under which conditions distributional properties can be detected using
response time data.

2.1 Binary Response Model

We first introduce the binary response model (e.g. Manski, 1988). There is a random variable
x̃ with values x ∈ R that induce binary responses by comparison with a decision threshold.
We normalize the threshold to zero without loss of generality. Thus, the response is i = 0

if x̃ takes a value x ≤ 0 and i = 1 if x̃ takes a value x > 0. We describe the distribution
of the latent variable x̃ by a cumulative distribution function (cdf) G, which we assume
to be continuous. It follows that the probabilities of the two responses are p0 = G(0) and
p1 = 1−G(0).
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The model has different applications and interpretations. For example, the latent variable
could be a random utility difference x̃ = u(1) − u(0) + ϵ̃(1) − ϵ̃(0) between two options,
inducing stochastic choices of a single agent (as in Alós-Ferrer, Fehr and Netzer, 2021). In a
different application, x̃ could describe the distribution of happiness in a population of agents,
inducing frequencies of responses to a binary survey question about life happiness (as in Liu
and Netzer, 2023). The same logic applies to other survey questions, where the responses
could be driven by a distribution of political attitudes or other preference parameters in the
population. In yet another application, x̃ could capture the random quality of papers that
are submitted to a journal, inducing the editor’s decision to accept or reject (as in Card et al.,
2024). The same logic applies to other settings where quality determines a binary decision,
such as whether to invest in an innovation project. Finally, the latent variable x̃ = ṽ − p

could describe the difference between willingness to pay for a product among consumers and
the product price, inducing the demand for the product at price p (in the spirit of Cotet and
Krajbich, 2021).

We now follow Alós-Ferrer, Fehr and Netzer (2021) and Liu and Netzer (2023) and
assume that the realized value x of x̃ not only determines the response but also the response
time, with larger absolute values implying faster responses, in line with the well-established
chronometric effect. Formally, we denote by c : R → [t, t] the chronometric function, where
0 ≤ t < t < ∞. The function c maps each realized value x into a response time c(x). It is
assumed to be continuous, strictly increasing on R− and strictly decreasing on R+ whenever
c(x) > t, and to satisfy c(0) = t and limx→−∞ c(x) = limx→+∞ c(x) = t. Figure 1 illustrates
two examples of chronometric functions that adhere to all these conditions.

The restriction of c to x ∈ R− is denoted c0. This function c0 has a well-defined inverse
(c0)−1 : (t, t] → R− that is continuous and strictly increasing. We extend it to t by setting
(c0)−1(t) = −∞ if c(x) > t for all x ∈ R− and (c0)−1(t) = max{x ∈ R− | c(x) = t} otherwise.
Analogously, the restriction of c to x ∈ R+ is denoted c1, with continuous and strictly
decreasing inverse (c1)−1 : (t, t] → R+, which we extend to t by setting (c1)−1(t) = +∞ or
(c1)−1(t) = min{x ∈ R+ | c(x) = t}, as appropriate.

In addition to the response probabilities, the model (G, c) also induces distributions of
response times. We denote by F i the cdf of response times conditional on a response of
i = 0, 1. Since a response i = 0 at time t or earlier arises if x ≤ (c0)−1(t), we obtain that

p0F 0(t) = G((c0)−1(t)) (1)

for all t ∈ [t, t], where we use the convention G(−∞) = 0. Analogously, a response i = 1 at
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•

•

t

t̄

0
x

response time

c0(x) c1(x)

(a) c0(x) = 0.1 + 1
1−2x , c

1(x) = 0.1 + 1
1+x .

•

•

t

t̄

0
x

response time

c0(x) c1(x)

(b) c0(x) = c1(−x) = max{0.1x+ 1.1, 0.1}.

Figure 1: Examples of chronometric functions.

Notes: The left panel in the figure depicts an asymmetric chronometric function c that
asympotically approaches the fastest response time t, while the right panel shows a symmetric
one that attains t at finite absolute values of the latent variable. In both panels, the red and
blue curves correspond to the restrictions of c to R− and R+, respectively.

time t or earlier arises if x ≥ (c1)−1(t), so that

p1F 1(t) = 1−G((c1)−1(t)) (2)

for all t ∈ [t, t], where we use G(+∞) = 1. The induced response-time cdfs F i are continuous
on [t, t] and satisfy F i(t) = 1. In summary, the binary response model (G, c) induces the
data (p, F ) = (p0, p1, F 0, F 1) according to (1) and (2).

2.2 Detecting Properties

We now ask what we can learn from observed data about the underlying binary response
model and, in particular, about the distribution G of the latent variable. Taking observed
data as given, different binary response models could have generated those data, so that
inference about the model is not straightforward. This is true especially if the analyst is not
willing to make potentially strong assumptions about the form of the chronometric function
or the latent distribution. We ask whether there are some properties that all models which
are consistent with the data satisfy. These respective properties are then detected from the
data rather than assumed by the modeller.

Consider a profile of data (pj, Fj)j = (p0j , p
1
j , F

0
j , F

1
j )j indexed by j ∈ J . The set J could

be a singleton, e.g. when studying the choices of a single agent between two options, or the
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responses of a single group of agents to one binary survey question. In this case we typically
omit the index j. If we observe the choices of a single agent for multiple pairs of options,
then the set J would describe the different binary choice problems. Alternatively, the index
could capture different agents or combinations of agents and choice problems. In a survey
application, the index could describe different questions or different demographic groups.
Since J is not necessarily finite, it could also model income levels j ∈ J ⊆ R+ of survey
participants. In the other applications discussed earlier, the index could describe different
journal editors or different prices at which market demand is observed. We assume that each
F i
j is continuous and satisfies F i

j (t) = 0 and F i
j (t) = 1. If pij = 0, then F i

j can be defined as
an arbitrary function that has these properties.1

Denote by G the set of all possible profiles (Gj)j of cdfs, where each individual Gj satisfies
our assumptions from the previous subsection. Similarly, denote by C the set of all possible
profiles (cj)j of chronometric functions that individually satisfy our previous assumptions.
For our main result, we leave G unrestricted but allow for a possibly restricted set C ∗ ⊆ C

of admissible chronometric functions. For example, each profile (cj)j ∈ C ∗ may have to
satisfy that all functions are symmetric across responses, c0j(−x) = c1j(x) for all x ∈ R+.
This restriction embodies the simple assumption that the chronometric effect is identical for
the two choice options. Another possible restriction would be that the functions are identical
across indices, cj = c for all j ∈ J , reflecting the assumption that the chronometric effect
is the same for all groups j. Other restrictions could be functional forms such as piece-wise
linearity, or combinations of multiple of these assumptions.

Definition 1. Given data (pj, Fj)j and a set C ∗ of admissible chronometric functions, a
property P of the distributions (Gj)j is detected if all ((Gj)j, (cj)j) ∈ G × C ∗ that induce
(pj, Fj)j—in the sense of (1) and (2) for all j ∈ J —have in common that (Gj)j satisfies P.

This idea of detection formalizes that property P is inferred from the data instead of
being imposed on the distributions by assumption. It corresponds to a standard notion of
non-parametric identification in econometrics (e.g. Manski, 1988; Bond and Lang, 2019).
The revealed preference approach in choice theory (Samuelson, 1938; Arrow, 1958) embodies
the same logic (see e.g. Benkert and Netzer, 2018; Alós-Ferrer, Fehr and Netzer, 2021).2

The ability to detect a property P will depend on the extent to which P is invariant to
transformations. For example, the property that a single cdf G is strictly increasing (full

1Even though our approach is very general, it does not allow describing correlations between choices
or response times across different indices j. We leave an extension that allows for such correlations across
decision problems to future work.

2We assume here implicitly that there exists at least one ((Gj)j , (cj)j) ∈ G × C ∗ that induces the data.
As we will see later, this is always the case when G is unrestricted. In Subsection 2.5.2 we will study the
case with restricted G ∗ ⊆ G and provide conditions for rationalizability of the data.
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support of the distribution) is invariant to all strictly increasing transformations, because
G(ψ(x)) is still strictly increasing in x, for any strictly increasing function ψ. This large class
of admissible transformations will make it possible to detect the property under relatively
mild assumptions on the chronometric function. More generally, let Ψ be a set of profiles (ψj)j

of functions ψj : R → R that are bijective and strictly increasing, hence continuous. The
set Ψ can embody various constraints, such as the restriction that each profile (ψj)j ∈ Ψ is
composed of identical functions (ψj = ψ for all j ∈ J). For any (Gj)j ∈ G and any (ψj)j ∈ Ψ,
the composition (Gj ◦ ψj)j is another profile of cdfs in G .

Definition 2. A property P of (Gj)j is invariant to transformations Ψ if (Gj ◦ψj)j also has
property P, for all (ψj)j ∈ Ψ.

As another example, the property of (G1, G2) that G1 first-order stochastically dominates
G2 is invariant to all profiles (ψ1, ψ2) of strictly increasing transformations that are identical
for the two distributions (ψ1 = ψ2), but not to distribution-specific transformations.

2.3 Generating Chronometric Functions

We consider sets C ∗ of chronometric functions that are generated by a representative profile
(c∗j)j ∈ C and a set of transformations Ψ as introduced above.

Definition 3. The pair ((c∗j)j,Ψ) generates C ∗ if for each (cj)j ∈ C ∗ there exists (ψj)j ∈ Ψ

such that (cj)j = (c∗j ◦ ψj)j.

Observe that only transformations ψj that satisfy ψj(0) = 0 yield well-defined chrono-
metric functions, while Ψ could contain functions without that property.

To illustrate the concept, we discuss several important examples of sets C ∗ and how they
can be generated. Consider the set of all profiles of chronometric functions which approach t
asymptotically in the limit but never reach t. This set is generated by a simple representative
member (c∗j)j, for example the symmetric hyperbolic form

c∗j(x) = t+
1

|x|+ 1/(t− t)
, (3)

identical for each j ∈ J , together with the unrestricted set of all profiles of transformations
(that are bijective and strictly increasing, hence continuous). To see why, just note that any
desired (cj)j can be obtained from (c∗j)j by using the transformations (ψj)j given by

ψj(x) =

(c∗,1j )−1(cj(x)) if x > 0,

(c∗,0j )−1(cj(x)) if x ≤ 0,
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for each j ∈ J . Similarly, the set of all profiles of chronometric functions which have cj(x) = t

for large but finite absolute values of x can be generated by a simple representative member,
for example given by the symmetric linear form

c∗j(x) =



t if (t− t) < x,

t− x if 0 < x ≤ (t− t),

t+ x if − (t− t) ≤ x ≤ 0,

t if x < −(t− t),

(4)

identical for each j ∈ J , together with the unrestricted set of all profiles of transformations.3

If we combine either (3) or (4) with the smaller set of transformations that are symmetric
around zero (ψj(−x) = −ψj(x) for all x ∈ R+), we can generate the respective sets of
profiles of chronometric functions that are symmetric across responses. If we combine (3)
or (4) only with transformations that are identical across indices, we generate only profiles
of chronometric functions that are identical across indices. We will discuss all these and
additional cases in our applications in Section 3.

2.4 Main Result

Given observed data (pj, Fj)j and a representative profile (c∗j)j of chronometric functions, we
can derive the empirical distribution functions

Hj(x) =

1− p1jF
1
j (c

∗
j(x)) if x > 0,

p0jF
0
j (c

∗
j(x)) if x ≤ 0,

(5)

for all j ∈ J . Each Hj is a well-defined and continuous cdf. It would be the true cdf of the
binary response model inducing (pj, Fj) if c∗j was the true chronometric function.

Of course, c∗j may well be different from the true chronometric function. However, the
proof of our main result will show that whenever any chronometric function cj that ratio-
nalizes the data can be written as cj = c∗j ◦ ψj for some ψj, the corresponding distribution
Gj can be written as Gj = Hj ◦ ψj. Therefore, if (Hj)j satisfies a property that is invariant
to Ψ, then any (Gj)j that is compatible with the data also satisfies that property, under the
assumption that ((c∗j)j,Ψ) generates C ∗. This gives rise to the following result.

3An example of a set C ∗ which cannot be generated by any ((c∗j )j ,Ψ) is one which contains some profiles
in which cj reaches cj(x) = t and other profiles in which cj(x) > t throughout, for some j ∈ J . However,
this can be addressed by our generalization in Subsection 2.5.1 which allows generation of sets by more than
one representative profile (c∗j )j .
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Theorem 1. Suppose C ∗ is generated by ((c∗j)j,Ψ). If (Hj)j satisfies a property P that is
invariant to transformations Ψ, then P is detected.

Proof. Let ((Gj)j, (cj)j) ∈ G × C ∗ be any model that induces (pj, Fj)j. Using the definition
of (Hj)j and the conditions (1) and (2) for inducing the data, we obtain that

Hj(x) =

Gj((c
1
j)

−1(c∗1j (x))) if x > 0,

Gj((c
0
j)

−1(c∗0j (x))) if x ≤ 0,

for each j ∈ J . Since ((c∗j)j,Ψ) generates C ∗, there exists (ψj)j ∈ Ψ such that cj = c∗j ◦ ψj,
for each j ∈ J . We therefore have c0j(x) = c∗0j (ψj(x)) for any x ≤ 0 and c1j(x) = c∗1j (ψj(x))

for any x > 0. It follows that (c0j)−1(t) = ψ−1
j ((c∗0j )−1(t)) and (c1j)

−1(t) = ψ−1
j ((c∗1j )−1(t)) for

all t ∈ [t, t]. It then follows that

Hj(x) =

Gj(ψ
−1
j (x)) if x > 0,

Gj(ψ
−1
j (x)) if x ≤ 0.

Note that this is also true when x̄∗j := (c∗0j )−1(t) is finite and we consider any x ≤ x̄∗j . In that
case, x̄j := (c0j)

−1(t) = ψ−1
j (x̄∗j) is also finite, and we have Gj(x) = 0 for all x ≤ x̄j because

(Gj, cj) induces data with F 0
j (t) = 0. For all x ≤ x̄∗j , we therefore have Gj((c

0
j)

−1(c∗0j (x))) =

Gj(x̄j) = 0 = Gj(ψ
−1
j (x̄∗)) = Gj(ψ

−1
j (x)). The analogous argument applies to x ≥ (c∗1j )−1(t).

To summarize, we have Hj = Gj ◦ ψ−1
j , for each j ∈ J . If (Hj)j satisfies a property P that

is invariant to transformations Ψ, then (Hj ◦ ψj)j = (Gj ◦ ψ−1
j ◦ ψj)j = (Gj)j also satisfies

P, and hence P is detected.

As we will show in Section 3, Theorem 1 is easy to apply. If we are interested in some
distributional property, we only need to check specific empirical distributions (Hj)j that are
based on a representative profile (c∗j)j of chronometric functions. These distributions can
be constructed directly from the observed data. If they satisfy a property that is invariant
to transformations Ψ, then this property is detected for the entire class of chronometric
functions that ((c∗j)j,Ψ) generates.

The theorem can also be used to detect whether a property is violated. Denote by ¬P the
property that property P is not true. The theorem immediately implies that if the empirical
distributions (Hj)j satisfy ¬P and this property is invariant to transformations Ψ, then ¬P
is detected. In other words, the violation of a property is detected when (Hj)j violates the
property and the violation is invariant to transformations Ψ. We remark that P and ¬P
can be invariant to the same set of transformations or to different sets of transformations;
Section 3 contains examples of both cases. Note further that detecting ¬P is stronger than
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not detecting P. A property is not detected if at least one model that is compatible with the
data violates the property, while detecting ¬P requires that all models that are compatible
with the data violate the property;4 again, Section 3 contains examples of both cases.

2.5 Extensions

2.5.1 Multiple Representative Chronometric Functions

A first extension covers the case where C ∗ is not generated from one representative profile
of chronometric functions (c∗j)j but from multiple profiles (ck∗j )j where k ∈ K. We say that
((ck∗j )kj ,Ψ) generates C ∗ if for each (cj)j ∈ C ∗ there exists (ψj)j ∈ Ψ and k ∈ K such that
(cj)j = (ck∗j ◦ ψj)j. For example, if we want to generate a chronometric function cj that
never reaches t, we need to start from a representative function c1∗j with that same property,
like (3). If we simultaneously want to generate another function that has cj(x) = t for large
absolute values of x, we need a different representative function c2∗j with that respective
property as a starting point, like (4).

Instead of a single empirical profile (Hj)j, we obtain one profile (Hk
j )j for each k ∈ K,

defined as in (5) using the respective function ck∗j . Theorem 1 then becomes that property P

is detected if (Hk
j )j satisfies P for each k ∈ K (under the otherwise identical assumptions).

In words, we simply need to repeat the previous procedure for each k ∈ K separately, and we
achieve detection if we achieve it for each k ∈ K. Analogously, a violation of P is detected
if (Hk

j )j violates P for each k ∈ K.
When (Hk

j )j satisfies P for some k but not for others, then the data is compatible with
some distributions that satisfy P and with others that violate it, so that we can detect
neither P nor its violation ¬P.5

2.5.2 Distributional Assumptions

Another extension covers the case where we restrict the set of admissible distributions to
some G ∗ ⊆ G . Any such restriction reflects prior knowledge of the analyst about properties
of the distributions (e.g., Manski, 1988). For example, in an application where each Gj

describes the willingness to pay of consumers minus the corresponding product price, the
different distributions in the profile (Gj)j should all be horizontal shifts (by the difference in
product prices) of one identical distribution.

4See also Liu and Netzer (2023, p. 3303) for a discussion of this difference in the context of first-order
stochastic dominance of happiness distributions.

5To be precise, this statement is correct when each (ck∗j ) for k ∈ K can actually be used for generating an
element of C ∗. We could always add profiles (ck∗j ) that are not required for generating C ∗. The corresponding
empirical functions (Hk

j )j tell us nothing about properties of the true distributions.
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Additional knowledge about the distributions can make detection easier. To illustrate,
assume that we want to detect whether the mean of G1 is larger than the mean of G2.
Such an application is discussed, for example, in Liu and Netzer (2023), and we will return
to it in Section 3. Without making distributional assumptions, this property is invariant
to identical positive affine transformations of the form ψj(x) = a + bx for b > 0, but
not to identical monotone transformations in general. Hence detecting it requires strong
assumptions on the set of admissible chronometric functions and a demanding empirical
condition. Consider instead the property that the median of G1 is larger than the median of
G2. This property is invariant to all identical monotone transformations and can therefore be
detected under milder conditions. We can compensate these milder conditions by assuming
that all distributions in G ∗ are symmetric around their mean, an assumption frequently
made in conventional binary response models. Since mean and median coincide in that case,
a detected ranking of the medians implies a detected ranking of the means.

An important question that arises when working with restrictions on both G ∗ and C ∗ is
whether the given data is rationalizable, i.e., whether there exist distributions and chrono-
metric funtions in the restricted sets that induce the data (see Echenique and Saito, 2017,
for the case of deterministic responses and response times). In Appendix A we study this
question and provide necessary and sufficient conditions for rationalizability, assuming that
both G ∗ and C ∗ are generated from representative functions using transformations from
pre-specified sets.

3 Theoretical Applications

In this section, we apply Theorem 1 to study various distributional properties that have
been of interest in diverse economic applications. We replicate and generalize existing results
from the literature and we present many new results. We first consider properties of single
distributions in Subsection 3.1, followed by properties of collections of multiple distributions
in Subsection 3.2.

3.1 Single Distribution

3.1.1 Full Support

We start with a simple application that is primarily didactic. Suppose we are interested in
the property of full support of the latent distribution, i.e., the cdf G being strictly increasing
on the entire R.

This property (and also its violation) is invariant to strictly increasing transformations
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(still assumed to be also bijective and hence continuous). We denote the set of all these
transformations by Ψall . Suppose we want to allow all chronometric functions that approach
t asymptotically in the limit but never reach t. We impose no other assumptions on their
shape, such as symmetry across the two different responses. Denote the set of all these
functions by C ∗

a.all (where a stands for asymptotic) and observe that it is generated by the
representative member (3) together with the transformations Ψall . We now construct an
empirical function H according to (5) using c∗ from (3), which yields

H(x) =

1− p1F 1
(
t+ 1

x+1/(t−t)

)
if x > 0,

p0F 0
(
t+ 1

−x+1/(t−t)

)
if x ≤ 0.

(6)

Theorem 1 tells us that full support is detected if H is strictly increasing in x, and a violation
of full support is detected if H is not strictly increasing in x. Expressed directly in terms
of the observed data, full support is detected if pi > 0 and F i has full support on [t, t], for
both i = 0, 1. A violation of full support is detected otherwise.

Suppose instead that we had reasons to believe that all chronometric functions reach
c(x) = t for finite absolute values of x, again without making any other assumptions on their
shape. Denote this set by C ∗

f .all (where f stands for finite) and observe that it is generated
by (4) together with Ψall . Theorem 1 now tells us that we need to check whether

H(x) =



1 if (t− t) < x,

1− p1F 1(t− x) if 0 < x ≤ (t− t),

p0F 0(t+ x) if − (t− t) ≤ x ≤ 0,

0 if x < −(t− t),

(7)

is strictly increasing in x. This is not the case, and we therefore detect that the distribution
violates full support. Intuitively, since the chronometric functions reach t but the response
time distributions have no atoms at t, the latent distributions cannot have full support.

If we allow the union C ∗
a.all ∪C ∗

f .all of chronometric functions, we can apply the extension
discussed in Subsection 2.5.1. If (6) is not strictly increasing, we detect that all distributions
that are compatible with the data do not have full support. If (6) is strictly increasing, then
we detect neither full support nor a violation of full support, because the data are compatible
with some distributions that have full support and others that have not.
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3.1.2 Sign of Mean

Our first economically relevant application concerns the sign of the mean. In a random
utility application where x̃ = u(1) − u(0) + ϵ̃(1) − ϵ̃(0) and the errors have mean zero, the
mean equals u(1)− u(0). Detecting the sign of the mean is therefore the same as deducing
the agent’s true (non-distorted) ordinal preference between the two options.

The sign of the mean is invariant to linear transformations of the form ψ(x) = bx for b > 0.
Denote the set of these transformations by Ψlin. Unfortunately, the sets of chronometric
functions which can be generated using Ψlin are rather restrictive. For example, when starting
from the symmetric linear function (4), we can generate the set of all symmetric linear
functions. To detect the sign of the mean u(1)− u(0) assuming this class, by Theorem 1 we
just need to calculate the sign of the mean of H, defined in (7), which can easily be done
empirically.6

We can achieve more robust detection by working with a property that is sufficient for
a positive mean (the argument for a negative mean is analogous). Consider the asymmetry
property that G(−x) ≤ 1 − G(x) for all x ∈ R+. This property implies that the mean of
G is positive (see Alós-Ferrer, Fehr and Netzer, 2021). It is invariant to all transformations
that are symmetric around zero but not necessarily linear. Denote this set by Ψsym.

Suppose that we once more allow chronometric functions that approach t asymptotically,
but further restrict attention to those which are symmetric across responses. The set of all
these functions, denoted C ∗

a.sym, is generated by (3) together with Ψsym. Intuitively, this set
captures the assumption that the chronometric effect is identical for the two choice options.
We obtain that the desired asymmetry of G is detected if H, defined in (6), exhibits the
desired asymmetry. Taken together and expressed directly in terms of the observed data, it
follows that

p0F 0(t) ≤ p1F 1(t) for all t ∈ [t, t] (8)

is a sufficient condition for a revealed preference u(0) ≤ u(1). We remark here that the same
condition obtains when considering the set C ∗

f.sym of all symmetric chronometric functions
that reach t and that analogous statements hold for revealed strict preferences.

Condition (8) is the same as in Theorem 1 of Alós-Ferrer, Fehr and Netzer (2021). They
discuss in detail that observing choice frequencies p0 ≤ p1 is not sufficient for a preference
u(0) ≤ u(1) to be revealed without the additional assumptions on error distributions (be-

6Some distributions do not have a mean. This can be dealt with either by using the procedure described
in Subsection 2.5.2 to restrict the set of distributions to those which have a mean, or by refining the desired
property, for example to “the mean exists and is positive.” Analogous arguments apply whenever a property
is not well-defined for all possible distributions.
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yond mean zero) that are made in conventional logit or probit models. However, if the
inequality holds for all response times, as stated in (8), then a preference is robustly revealed
without distributional assumptions. Alós-Ferrer, Fehr and Netzer (2021) report that slightly
more than 60% of all stochastic choices in the data of Clithero (2018) do robustly reveal a
preference.7 Alós-Ferrer, Garagnani and Fehr (2023) use the same condition to show that a
sizable fraction of choices that violate stochastic transitivity in different experiments reveal
non-transitive preferences and can thus not be explained by transitive preferences together
with noise.

Our approach suggests possible generalizations of Alós-Ferrer, Fehr and Netzer (2021).
For example, if we have reasons to believe that the chronometric effect is different for the two
choice options, we can construct H based on a representative chronometric function c∗ that
is asymmetric across the options, and we obtain a modified version of condition (8) which
reflects our prior knowledge of the asymmetry. Assume, for example, that the representative
function satisfies c∗1(x) = m(c∗0(−x)) for some m : [t, t] → [t, t] and all x ∈ R+. Then,

p0F 0(t) ≤ p1F 1(m(t)) for all t ∈ [t, t]

is sufficient for detecting u(0) ≤ u(1). If responses i = 1 are a priori known to be faster
than responses i = 0, formalized by m(t) ≤ t for all t, then the right hand side is smaller
than in (8) and the inequality is harder to satisfy. The converse is true if responses i = 0

are faster. If we want to allow for some degree of asymmetry without knowing details, we
can construct multiple functions Hk using different representative functions ck∗ with varying
degrees of asymmetry. For a revealed preference, all modified versions of condition (8) have
to hold simultaneously, ultimately resulting in a requirement that the difference between the
left and the right hand side of (8) must be large enough. This would give rise to a more
demanding but even more robust test than in Alós-Ferrer, Fehr and Netzer (2021).

As a side remark—and to illustrate the logic of additional distributional assumptions
discussed in Subsection 2.5.2—let us finally assume that any admissible G is symmetric
around its mean. In that case, we can try to detect the sign of the median instead of the
mean because the two are identical. Whatever representative chronometric function c∗ we
use in our construction of H—and therefore irrespective of which C ∗ we want to generate—
the sign of the median of H equals the sign of p1 − p0. This mirrors a well-known result
(stated, for example, as Proposition 2 in Alós-Ferrer, Fehr and Netzer, 2021): under the
assumption of symmetric noise distributions, choice frequencies reveal preferences without
the need to rely on response time data.

7Alós-Ferrer, Fehr and Netzer (2021) allow all chronometric functions that are symmetric. One minor
difference is that they assume the chronometric function to be unbounded while we assume that t is finite.
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3.1.3 Inequality

Our method can also be used to detect inequality or dispersion of a distribution, which has ap-
plications across multiple fields. For instance, within the literature on subjective well-being,
there is a substantial interest in understanding the inequality of happiness (e.g. Stevenson
and Wolfers, 2008). Similarly, researchers have studied societal polarization by measuring
the dispersion of individual attitudes towards social and political issues (DiMaggio, Evans
and Bryson, 1996; Evans, 2003). In the context of market competition, the spread of con-
sumer preferences has direct implications for the optimal pricing and advertising strategies
of firms (Johnson and Myatt, 2006; Hefti, Liu and Schmutzler, 2022). Unfortunately, stan-
dard measures of inequality like the Gini index require cardinal information, which makes
their application to ordered response data questionable (see the discussion in Dutta and
Foster, 2013). Response times may serve as the source of cardinal information, even when
the decisions are binary such as consumers’ decisions to buy or not buy a product (Cotet
and Krajbich, 2021).

The Lorenz curve is a convenient graphical representation of a distribution’s inequality,
and interesting measures of inequality like the Gini index are based on the Lorenz curve
(Atkinson, 1970; Cowell, 2011). For any distribution G, the associated Lorenz curve is
defined by

L(q,G) =

∫ q

0
G−1(x)dx∫ 1

0
G−1(x)dx

for all q ∈ [0, 1],

where G−1(x) := inf{x | G(x) ≥ q} denotes the left inverse of G. In the context of subjective
well-being, L(q,G) could be understood as the proportion of total happiness allocated to the
least happy 100q percent of the population. How far the Lorenz curve falls below the 45-
degree line is an indication of how unequal the distribution is. The curve is invariant to all
linear transformations Ψlin of the distribution G. Therefore, if we plot the Lorenz curve for
an empirical function H like in (6) or (7), or based on any other representative function c∗,
exactly this Lorenz curve (and any measure based on it like the Gini index) is detected for
the class of chronometric functions that are linearly generated from c∗. As before, we can
repeat this procedure for various different representative functions ck∗ to obtain bounds on
the true Lorenz curve for larger sets of chronometric functions.

We just remark that analogous arguments apply to other distributional properties that
are invariant to linear transformations, like skewness or kurtosis.
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3.1.4 Unimodality

We close the section on single distributions with the property that the distribution is uni-
modal with mode at zero, i.e., G is convex below zero and concave above zero, and strictly
so except when G(x) ∈ {0, 1}. Unimodality is of interest once more in political applications
where G describes the distribution of political attitudes in a population. Unimodality reflects
a centered population where more extreme positions receive less support. An ongoing debate
in political science disagrees whether political attitudes follow unimodal distributions or are
polarized and better described by bimodal distributions (see Lelkes, 2016; Vaeth, 2023). An-
alysts often want to learn about these properties from survey responses, but as Vaeth (2023)
points out, ordinal responses are inadequate to test for properties like uni- or bimodality of
the underlying distribution.

The property of unimodality is invariant to (sigmoid) transformations that satisfy ψ(0) =
0 and are weakly convex below zero and weakly concave above zero, the set of which is
denoted Ψsig. Starting from a representative chronometric function c∗, the transformations
Ψsig allow us to generate all chronometric functions which are weakly “more convex” than
c∗ on R− and on R+ separately (because c∗ is increasing on R− but decreasing on R+). We
will use this insight in a slightly different way than before. Assume that the observed cdfs
F i are strictly increasing on [t, t]. Then consider the representative chronometric function
constructed from the data by

c∗(x) =



t if 1 < x,

(F 1)−1(1− x) if 0 < x ≤ 1,

(F 0)−1(1 + x) if − 1 ≤ x ≤ 0,

t if x < −1,

(9)

which is a member of C ∗
f.all. With this function, the empirical distribution H becomes

H(x) =



1 if 1 < x,

1− p1 + p1x if 0 < x ≤ 1,

p0 + p0x if − 1 ≤ x ≤ 0,

0 if x < −1,

which is piece-wise linear. Applying any strictly sigmoid transformation to (9) generates a
chronometric function that is strictly more convex (for each response separately) and results
in a unimodal H. By the same logic, applying any strictly inverse-sigmoid transformation
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generates a strictly more concave chronometric function and a distribution H that is not
unimodal. Function (9) therefore delimits sets of chronometric functions for which we can
detect or reject unimodality. It follows from Theorem 1 that unimodality is detected for all
those functions that are more convex than (9) and rejected for those that are more concave.
This approach does not cover all possible chronometric functions but may yield expressive
results. For example, if (9) plotted from the data is already strongly convex, then it appears
unlikely that the true chronometric function is even more convex, and we may be able to
reject the assumption of unimodality of the distribution.

3.2 Multiple Distributions

3.2.1 First-Order Stochastic Dominance

As a first application involving more than one distribution, consider the property of (G1, G2)

that G1 first-order stochastically dominates G2, i.e., G1(x) ≤ G2(x) for all x ∈ R. In the
context of happiness surveys, Bond and Lang (2019) have pointed out that conventional
probit or logit models make that assumption when comparing two (or more) groups of
survey participants. The assumption is crucial for the results of these models, as it yields a
ranking of the groups’ average happiness for any choice of the happiness scale. Without the
assumption, the sign of estimated parameters can often be flipped by using a different scale.
For example, rich survey participants may be less happy on average than poor participants
despite responding to be happy more frequently. It is difficult to test FOSD using only
response data.

For our approach here, observe that FOSD (and also its violation) is invariant to all
profiles (ψ1, ψ2) of increasing transformations that satisfy ψ1 = ψ2. Denote the set of all
these profiles by Ψall.i (where i stands for identical across the index j). Let C ∗

a.all .i be the
set of all profiles of chronometric functions that approach t asymptotically and are identical
across indices. This set is generated by the representative chronometric function (3) for all
j ∈ J together with Ψall.i. Intuitively, it embodies the assumption that the chronometric
effect is identical for all groups but otherwise unrestricted. By Theorem 1, we now need to
check whether H1 first-order stochastically dominates H2, where Hj is defined as in (6) using
the observed data (p0j , p

1
j , F

0
j , F

1
j ) of group j = 1, 2. Expressed directly in terms of the data,

we detect FOSD if

p01F
0
1 (t)− p02F

0
2 (t) ≤ 0 ≤ p11F

1
1 (t)− p12F

1
2 (t) (10)

for all t ∈ [t, t], and a violation of FOSD otherwise. We remark that the same condition
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obtains when considering the set C ∗
f .all .i of identical chronometric functions that reach t and

that an analogous statement holds when a strict inequality for some x is required in the
definition of FOSD.

Condition (10) equals conditions (i) and (ii) of Proposition 2 in Liu and Netzer (2023).8

As they point out, for t = t condition (10) reduces to p01 ≤ p02, which is the condition under
which conventional probit or logit models conclude that group j = 1 is happier than group
j = 2. To arrive at this conclusion without making distributional assumptions, the inequali-
ties in (10) must hold for all t. Liu and Netzer (2023) test these inequalities using data from
an online survey. They show that the null hypothesis of FOSD often cannot be rejected, in
particular in cases where the probit model yields significant parameter estimates, indicating
that the results of conventional models often seem to be robust at least qualitatively.

Our approach here suggests possible generalizations. One worry when comparing re-
sponse times across individuals as in a survey is that they may differ in their decision speed.
Liu and Netzer (2023) address this problem by normalizing individual response times using
a baseline question and by showing that i.i.d. heterogeneity does not affect the necessary
detection conditions used for testing. A different approach that accounts for group-specific
decision speed would be to construct the functions Hj based on group-specific represen-
tative chronometric functions c∗j , utilizing prior knowledge about group differences. The
result would be an asymmetric version of (10). Imprecise knowledge of group differences
could once more be captured by working with multiple functions Hk

j and checking multiple
corresponding conditions, giving rise to a more demanding but more robust test.

3.2.2 Ranking of Means

Suppose we want to detect whether the mean of G1 is larger than the mean of G2. A first
application where the comparison of means matters is once more the case of surveys, where
we want to learn whether one group is happier than another on average. We will discuss a
second application at the end of this subsection.

The ranking of the means is invariant to identical positive affine transformations of the
form ψj(x) = a + bx for b > 0. Since we can only use the subset of those transformations
which satisfy a = 0 when generating chronometric functions, we restrict attention to the
set Ψlin.i of identical linear transformations right away. The set of chronometric functions
that can be generated by linear transformations is rather restrictive, as we discussed before.
However, if the assumption holds, the analysis can be remarkably simple. As an example,

8Proposition 2 in Liu and Netzer (2023) characterizes detection of first-order stochastic dominance using
general ordered response models for surveys with more than two response categories. Their condition (iii)
applies to the intermediate response categories and coincides with the demanding condition by Bond and
Lang (2019), as response times are not monotone and hence not informative in the intermediate categories.
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if we have reasons to believe that the chronometric functions are symmetric, linear, and
identical for both j = 1, 2, then we can simply compare the means of H1 and H2, where Hj

is defined as in (7) using the observed data (p0j , p
1
j , F

0
j , F

1
j ) of group j = 1, 2.

It is again possible to achieve more robust detection using conditions that are sufficient for
a ranking of the means. One sufficient condition is of course first-order stochastic dominance
of G1 over G2, which we discussed before. Hence, (10) is a sufficient condition for detecting
that the mean of G1 is larger than the mean of G2, using only the assumption that the
chronometric function is the same in both groups j = 1, 2. Another sufficient condition
would be the detection that the mean of G1 is positive while the mean of G2 is negative,
which we discussed in Subsection 3.1.2. It thus follows immediately that

p12F
1
2 (t)− p02F

0
2 (t) ≤ 0 ≤ p11F

1
1 (t)− p01F

0
1 (t) (11)

for all t ∈ [t, t] is also sufficient for detecting a ranking of the means.
A comparison of conditions (11) and (10) is instructive. In inequality (10), we compare

response times between the groups j (by calculating a difference of the distributions) but
not between the response categories i. The result therefore generates detection under the
assumption that the chronometric function is identical for the two groups but not necessarily
symmetric across the two responses. In inequality (11), we compare response times between
response categories i but not between groups j. It therefore requires the assumption that the
chronometric function is symmetric across responses but not necessarily identical between
the two groups. Formally, the condition that we are aiming to detect with (11) is invariant to
transformations that are symmetric around zero but possibly different between the groups,
the set of which is denoted Ψsym.d (where d stands for different across the index j). These
transformations can, for example, be used to generate the sets C ∗

a.sym.d or C ∗
f.sym.d of profiles

of chronometric functions with the just-discussed properties.9

We now discuss a third sufficient condition for a ranking of the means. Consider the
property that G1(x)+G1(−x) ≤ G2(x)+G2(−x) for all x ∈ R+. This condition implies that
the mean of G1 is larger than the mean of G2 (see Appendix B). Furthermore, the condition
is invariant to transformations that are identical for both j = 1, 2 and symmetric around
zero. Denote this set by Ψsym.i.

Starting from the representative functions (3) for all j ∈ J , we can use Ψsym.i to generate
the set C ∗

a.sym.i of all chronometric functions that approach t asymptotically and are sym-
metric across responses and identical across indices. Using this set, Theorem 1 implies that

9Condition (11) and the results in the next two paragraphs were first derived in our earlier working paper
Liu and Netzer (2020) and are unpublished as yet. Other results from Liu and Netzer (2020) were published
as Liu and Netzer (2023).
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our desired inequality condition is detected if it holds for the functions H1 and H2 that are
constructed based on (6). Taken together and expressed directly in terms of the observed
data, it follows that

p01F
0
1 (t)− p02F

0
2 (t) ≤ p11F

1
1 (t)− p12F

1
2 (t) (12)

for all t ∈ [t, t] is another sufficient condition for detecting that the mean of G1 is larger than
the mean of G2. We remark that the same condition obtains when allowing the respective
set C ∗

f.sym.i of chronometric functions that reach t and that an analogous statement holds
for detecting a strict inequality of means. Inequality (12) is a weaker requirement than
the directly comparable conditions (10) or (11). However, as it implements a comparison
of response times across the groups and across the responses, it generates detection only
under the stronger combination of assumptions required in (10) and (11), namely that the
chronometric functions are symmetric across responses and identical between groups.

We now discuss another application that involves the comparison of two means. Suppose
we observe the choices of a single agent between the two options x and z and between the
two options y and z. Can we infer the agent’s preference between x and y from these choices?
Sometimes this is possible based on transitivity of preferences, for example if x is chosen over
z and z is chosen over y. If, by contrast, both x and y are chosen over z, then we cannot
rank x and y directly. Krajbich, Oud and Fehr (2014) note, however, that the preference can
be deduced from response times under the assumption of a monotone chronometric effect.
When the choice of x over z is faster than the choice of y over z, then u(x)− u(z) must be
larger than u(y)−u(z) and we can conclude that u(y) ≤ u(x) (see also Echenique and Saito,
2017). Alós-Ferrer, Fehr and Netzer (2021) provide a generalization of this argument for
stochastic choice under the assumption of symmetric utility distributions. Following their
setting, suppose that the random utility difference between x and z is described by a cdf
Gxz with mean u(x)− u(z), and the random utility difference between y and z is described
by Gyz with mean u(y) − u(z). Deducing a revealed preference for x over y can now be
rephrased as detecting that the mean of Gxz is larger than the mean of Gyz.

We can put several of our above results to work. First, one sufficient condition is that
Gxz first-order stochastically dominates Gyz, which we detect (under the above-described
assumptions on the chronometric functions) when

pzxzF
z
xz(t)− pzyzF

z
yz(t) ≤ 0 ≤ pxxzF

x
xz(t)− pyyzF

y
yz(t)

for all t ∈ [t, t], where lower indices describe the binary choice problem and upper indices
describe the chosen option. Another sufficient condition is that the mean of Gxz is positive
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while the mean of Gyz is negative, which we detect (under different assumptions on the
chronometric functions) when

pyyzF
y
yz(t)− pzyzF

z
yz(t) ≤ 0 ≤ pxxzF

x
xz(t)− pzxzF

z
xz(t)

for all t ∈ [t, t]. Finally, a weaker sufficient condition for detecting the out-of-sample prefer-
ence (but under stricter assumptions on the chronometric functions) is

pzxzF
z
xz(t)− pzyzF

z
yz(t) ≤ pxxzF

x
xz(t)− pyyzF

y
yz(t)

for all t ∈ [t, t]. To our knowledge, none of these conditions has been studied in the individual
choice context. We emphasize that we obtain the revealed preference between x and y

without making any assumptions on the shape of the utility distributions, but remark that
a revealed preference translates into an out-of-sample prediction of choice probabilities only
with additional distributional assumptions such as symmetry.

We can also follow Alós-Ferrer, Fehr and Netzer (2021) and assume right away that Gxz

and Gyz are symmetric around their means. Since mean and median coincide in this case, we
can instead try to detect whether the median of Gxz is larger than that of Gyz. This property
is invariant to the set Ψall.i of all transformations that are identical for the two distributions.
We can therefore detect the property assuming either C ∗

a.all.i or C ∗
f.all.i, which means that

we only have to assume that the chronometric effect is the same in the two binary decision
problems. Consider then the case where pxxz > 1/2 and pyyz > 1/2, which under symmetry
implies that both u(x)−u(z) are u(y)−u(z) are strictly positive, so that a preference between
x and y does not follow from transitivity. Define θxz and θyz as percentiles of the response
time distributions when x or y were chosen over z, respectively, as follows:

F x
xz(θxz) =

1

2pxxz
and F y

yz(θyz) =
1

2pyyz
.

It is now an easy exercise to show that the median of Hxz is larger than the median of Hyz,
where both functions are constructed either as in (6) or as in (7), if and only if

θxz ≤ θyz. (13)

Analogous statements hold for strict inequalities and for the case pxxz < 1/2 and pyyz < 1/2.
Inequality (13) is the condition stated in Theorem 2 of Alós-Ferrer, Fehr and Netzer (2021)

for a revealed preference u(y) ≤ u(x) under the assumption of symmetric distributions. As
these authors discuss in detail, (13) formalizes that the choice of x over z is faster than the
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choice of y over z, in a setting with stochastic choices and response times. They then use
the result to make out-of-sample predictions in the data of Clithero (2018) and show that
about 80% of the predictions are correct, as compared to only about 74% for a conventional
logit model. Similarly, Alós-Ferrer and Garagnani (2024) use the result to predict subjects’
choices under risk in different experiments and show that it outperforms the predictions of
various structural models of behavior.

Our approach here adds to the result of Alós-Ferrer, Fehr and Netzer (2021) in different
ways. First, it clarifies the intuition underlying inequality (13) as a condition which detects
the ranking of two medians. Second, it therefore shows that the same result holds under
any other distributional assumption that implies that the ranking of medians is the same
as the ranking of means, not just symmetry. Third, it generalizes the result by showing
that the assumption of a symmetric chronometric function, which Alós-Ferrer, Fehr and
Netzer (2021) made, is not necessary. Finally, it once more paves the way for generalizations
which allow for different chronometric functions across different binary choice problems. For
example, if the representative chronometric functions in the choice problems are c∗xz = c∗

and c∗yz = m ◦ c∗ for some functions c∗ and m, then the condition analogous to (13) becomes

θxz ≤ m−1(θyz). (14)

If we have reasons to believe that the choices of y are faster than those of x for any fixed
utility difference to z (for example because y and z are easier to compare than x and z, see
Gonçalves, 2024), then the transformation m−1 makes the right hand side of (14) larger and
the inequality easier to satisfy. The opposite is true when the choices of x are faster. General
robustness considerations could be taken into account once more by requiring a sufficiently
large difference between θxz and θyz.

3.2.3 Likelihood-Ratio Dominance

Consider next the property of (G1, G2) that G1 likelihood-ratio dominates G2, defined by
the inequality

(G1(x)−G1(x
′′))(G2(x)−G2(x

′)) ≤ (G1(x)−G1(x
′))(G2(x)−G2(x

′′))

for all x′′ < x′ < x (see Wang and Lehrer, 2024). If G1 and G2 are absolutely continuous,
the property can be equivalently expressed in terms of their density functions g1 and g2 as
g1(x

′)g2(x) ≤ g1(x)g2(x
′) for any x′ < x (see Shaked and Shanthikumar, 2007). Likelihood-

ratio dominance, which is stronger than FOSD, has proven useful in a range of economic
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applications that involve monotone comparative statics under uncertainty (Milgrom, 1981;
Athey, 2002). Suppose that the goal is to maximize the expected value of a function π(y, x)
by choice of y when x is distributed according to Gj. If π(y, x) satisfies a single-crossing
property and G1 likelihood-ratio dominates G2, then the optimal choice of y is larger for G1

than for G2 (under appropriate technical conditions, see Athey, 2002). For example, a firm
may introduce a new product in two different countries, each of which is characterized by
a distribution of consumer types. Higher types imply a higher demand for the product in
a way that the firm’s profit π(p, x) as a function of price p and type x is single-crossing. If
the firm’s market research (e.g. a survey that asks potential consumers whether they like the
product) allows the detection of likelihood-ratio dominance of the type distributions of the
two countries, the firm knows in which country to charge a higher price. Other applications
of the concept include optimal investment decisions and bidding in auctions.

Like FOSD, likelihood-ratio dominance (and its violation) is invariant to all profiles of
transformations in Ψall,i. We thus proceed as with FOSD by constructing (H1, H2) as de-
fined in either (6) or (7) and then verifying whether H1 likelihood-ratio dominates H2. For
example, checking the respective inequalities for all x′′ < x′ < x ≤ 0 can be expressed in
terms of the data as

(p01F
0
1 (t)− p01F

0
1 (t

′′))(p02F
0
2 (t)− p02F

0
2 (t

′)) ≤ (p01F
0
1 (t)− p01F

0
1 (t

′))(p02F
0
2 (t)− p02F

0
2 (t

′′))

for all t′′ < t′ < t. The full condition is particularly easy to express when pij > 0 and the
response time distributions F i

j admit strictly positive densities f i
j . In that case, we detect

likelihood-ratio dominance if the empirical likelihood-ratio

pi1f
i
1(t)

pi2f
i
2(t)

is weakly increasing in t for i = 0 and weakly decreasing in t for i = 1, and

p01f
0
1 (t)

p02f
0
2 (t)

≤ p11f
1
1 (t)

p12f
1
2 (t)

holds. Otherwise, a violation of likelihood-ratio dominance is detected.
Our approach extends analogously to the detection of hazard-rate dominance and reversed

hazard-rate dominance, both of which lie between likelihood-ratio dominance and FOSD, and
which are also commonly used in applied settings (e.g. Kiefer, 1988; Maskin and Riley, 2000;
Wang and Lehrer, 2024).
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3.2.4 Ranking of Inequality

We can return to our discussion of inequality from Subsection 3.1.3 and study the comparison
of two distributions in terms of their dispersion. The subjective well-being literature has been
interested in how inequality of happiness changed over time and across nations (Kalmijn
and Veenhoven, 2005; Stevenson and Wolfers, 2008; Dutta and Foster, 2013). There is also
a great interest in political polarization trends (DiMaggio, Evans and Bryson, 1996; Evans,
2003). Finally, firms have an interest in learning about changes in the spread of consumer
preferences, using data from purchase decisions or market research surveys, to optimally
adapt their pricing and advertising (Johnson and Myatt, 2006; Hefti, Liu and Schmutzler,
2022).

Consider first the problem of detecting whether G1 has a smaller variance than G2,
which is a convenient way of ranking the dispersion of distributions due to its ability to
provide a complete order. Just as for the ranking of means, this property is invariant only to
transformations (ψ1, ψ2) that are linear and additionally satisfy ψ1 = ψ2. Comparing instead
the inequality based on Lorenz curves has the benefit of avoiding direct scale comparisons,
as the two distributions’ Lorenz curves are invariant to transformations (ψ1, ψ2) that are
linear but not necessarily identical. For example, we can say that G1 Lorenz-dominates
G2 if L(q,G1) ≥ L(q,G2) holds for all q ∈ [0, 1] (see Shaked and Shanthikumar, 2007).
Then, under the assumption of knowing the chronometric functions up to group-specific
linear transformations, detecting a Lorenz-dominance relationship between G1 and G2 (or
the absence thereof) is equivalent to checking whether the property holds for the respective
empirical functions (H1, H2).

Another measure that can be used for assessing the relative dispersion of distributions
is the concept of single-crossing dominance (Diamond and Stiglitz, 1974; Hammond, 1974).
Formally, G1 single-crossing dominates G2 if there exists x∗ such that G1(x) ≤ G2(x) if
x ≤ x∗ and G1(x) ≥ G2(x) if x ≥ x∗. Intuitively, the condition states that the two cdfs
G1 and G2 cross at most once and thus reflects the idea that G1 assigns less probability
weight to values at the tails of the distribution compared to G2. Although the property of
single-crossing dominance is sensitive to group-specific transformations, it has the advantage
of being robust to non-linear transformations. Indeed, just like FOSD, the property (and
its violation) is invariant to all profiles of transformations in Ψall,i. Therefore, according to
Theorem 1, single-crossing dominance is detected for a relatively large class of chronometric
functions if H1 single-crossing dominates H2, using either (6) or (7), and a violation thereof
is detected otherwise. The condition can again be expressed directly in terms of the data: it
requires that pi1F i

1(t) and pi2F
i
2(t) cross at most once for one of the two responses i ∈ {0, 1}

and not at all for the other response.
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Finally, it is known that either Lorenz-dominance or single-crossing dominance imply
second-order stochastic dominance (SOSD) when G1 has a higher mean than G2. Therefore,
combining several of the results derived so far allows us to detect SOSD.

3.2.5 Correlation

Our last theoretical application expands upon the baseline model by investigating the cor-
relation between a latent variable x ∈ R (e.g., happiness, political attitude, or trust) and
an observable variable represented by the index j ∈ R (e.g., income, work hours, or social
media usage). Such an application can be of particular value in the context of opinion sur-
veys on topics that are sensitive (e.g., approval of authoritarian governments, or attitudes
towards the LGBT+ population) where subjects may hesitate to provide certain answers,
for instance those conflicting with the government (Guriev and Treisman, 2020) or social
norms (Coffman, Coffman and Ericson, 2017), resulting in limited variation in the response
data. Our approach can compensate the potential lack of power of traditional analysis in
such scenarios by replacing response variation with variation in response times.

To this end, we define a cumulative distribution function Γ over the indices j ∈ J ⊆ R—
which is observable—and interpret (Gj)j as the conditional distributions of x given each
value j. The joint distribution of (x, j) is fully determined by (Gj)j and Γ. Further, just
like in the baseline model, given observed data (pj, Fj)j and a representative profile (c∗j)j

of chronometric functions, we can derive empirical distribution functions (Hj)j as defined
in (5). These empirical functions, together with Γ, also give rise to a well-defined joint
distribution of (x, j).

A first attempt to quantify the association between x and j is to employ the standard
Pearson correlation coefficient

ρ =
Cov(x, j)√

Var(x)Var(j)
, (15)

where Cov indicates the covariance function and Var indicates the variance function. The
value of this coefficient is invariant to all profiles (ψj)j of positive affine transformations that
are identical for all j ∈ J . Consequently, when the set of all possible profiles of chronometric
functions is given by C ∗

lin.i, for example, we can ascertain the exact correlational pattern by
computing (15) for the joint distribution of (x, j) constructed via the functions (Hj)j defined
in (7) and the marginal distribution Γ.

To circumvent the linearity restriction, one might opt for measuring the rank correlation
between x and j, which is particularly natural when x and j are ordinal variables (Kendall,
1955). Intuitively, the rank of a variable is preserved under any monotonic transformation,
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thereby allowing for more robust detection. For example, consider Spearman (1904)’s rank
correlation coefficient, or Spearman’s rho, defined as

ρs =
Cov(G(x),Γ(j))√

Var(G(x))Var(Γ(j))
,

where the function G here represents the marginal distribution of x and is given by

G(x) =

∫
R
Gj(x) dΓ(j) for all x ∈ R.

Since the rank of x within the population remains unchanged under any profile (ψj)j of
strictly increasing transformations that are identical across j, so does the value of Spearman’s
rho. A similar observation holds for another rank-based correlation measure, Kendall’s tau
(Kendall, 1955), which is defined as

ρτ = E
[
1{(x−x′)(j−j′)>0}

]
− E

[
1{(x−x′)(j−j′)<0}

]
,

where (x′, j′) is distributed independently of (x, j) but with the same joint distribution.
Consequently, the rank correlation patterns for our variables of interest are detected under a
fairly general class of chronometric functions, whenever they hold for the joint distribution
induced by the appropriate functions (Hj)j and Γ.10

4 Empirical Application

Easterlin (2005) postulates that “[f]ew generalizations in the social sciences enjoy such wide-
ranging support as that of diminishing marginal utility of income”, where he interprets
utility explicitly as “subjective well-being” (p. 243). Easterlin then criticizes this notion of
decreasing marginal happiness by showing that it does not generalize from cross-sectional
data to time series data. Oswald (2008) and Kaiser and Oswald (2022) extend this criticism
far beyond the mere instability of the income-happiness relation. They argue that we do
not even know whether marginal happiness is decreasing in income for cross-sectional data.
The argument is simple. The empirically observed relationship e : W → R between income
and reported happiness is actually the composition of a first function h : W → H that
maps income into happiness and a second function r : H → R that maps happiness into

10The invariance property shared by Spearman’s rho and Kendall’s tau is related to the fact that they
both depend only on the bivariate Copula of the two random variables, which is invariant to monotone
transformations; see e.g. Fan and Patton (2014) and Haugh (2016). The population version of Spearman’s
rho and Kendall’s tau that we adopt here were both taken from Haugh (2016).
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reported happiness. Observing that e(w) = r(h(w)) is concave in w does not imply that
h(w) is concave in w and therefore does not establish decreasing marginal happiness. The
observed concave relationship may just as well be due to a concave reporting function r, for
example because subjects are “intrinsically reluctant to approach the upper possible level
on the questionnaire” (Kaiser and Oswald, 2022, p. 370). Much of the existing evidence
for decreasing marginal happiness is thus based on the unjustified assumption of a linear
reporting function. Other studies have estimated more advanced ordered response models.
However, as Bond and Lang (2019) have shown, the estimated relationship between income
and happiness in this case depends entirely on the distributional assumptions of the model,
which again impose an arbitrary cardinal scale. Overall, Kaiser and Oswald (2022) conclude
that the problem is “fundamental, little recognized, and so far unsolved” (p. 3).

To formalize the income-happiness relation in our framework, let (Gw)w denote the family
of happiness distributions for all possible income levels w ∈ W ⊆ R+ and define µ(w) =∫
R xdGw(x) to be the average happiness of agents with income w. The question of interest is

whether µ is a concave function of w. It appears natural to answer this question by plotting
the average response in a happiness survey against income, as many studies have done and
which typically results in a concave relationship. We repeat this exercise here using data from
an online survey conducted on MTurk by Liu and Netzer (2023). Their data has responses
from 3’743 subjects to the binary question about whether they are “rather happy” or “rather
unhappy.” Our analysis is complicated by the fact that household income is reported only
in three broad bins: below $40’000, between $40’000 and $69’999, and above $70’000. We
need to associate each of these bins with a unique income value, denoted wL, wM and wH .
We do this by eight different methods, ranging from the simple use of bin midpoints to an
advanced procedure that predicts individual incomes based on observables using estimation
results from auxiliary PSID data (Survey Research Center, 2021). Details of these methods
are described in Appendix C. Figure 2 plots the average response to the happiness question
(labeling the responses 0 and 1, so that this average coincides with the relative frequency of
the “rather happy” response) on the y-axis against the three imputed income levels on the
x-axis. As expected, the relationship between income and reported happiness is concave, for
all eight methods that we use to determine the three income levels. Like in Easterlin (2005)
and the literature cited therein, this is a bivariate relation without any additional controls,
but the results are analogous when conditioning on various socio-demographic variables.

Our point here is that the concavity in Figure 2 does not establish concavity of µ, which
in our context reduces to the single inequality

αµ(wL) + (1− α)µ(wH) ≤ µ(wM), (16)
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Figure 2: The relationship between income and reported happiness.

Notes: The eight colored curves correspond to the different methods used to determine the
average income within each bin.

where α is such that αwL+(1−α)wH = wM . Following the logic of Bond and Lang (2019), we
can easily explain the data in Figure 2 with happiness distributions (GL, GM , GH) for which
(16) is violated, for example distributions that become more right-skewed as income grows
and which therefore go along with high average happiness among the rich. It is impossible
to reject or verify such distributional assumptions based on response data alone.

According to (16), the problem of detecting or rejecting decreasing marginal happiness is
a problem of ranking the means of distributions, for which we have developed conditions in
Subsection 3.2.2. The left-hand side of (16) is the average happiness in a mixed population
composed of a fraction α of subjects with low income and a fraction 1− α of subjects with
high income. Under the assumption that all income groups have the same chronometric
function, which most of the criteria from Subsection 3.2.2 require anyway, we can therefore
pool the two extreme income groups with appropriate weights and detect or reject (16) based
on response time data. We follow Liu and Netzer (2023) and normalize individual response
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Method α Mean Happiness p-Value
Pooled Middle (12) (10) (11)

1 0.500 98’787 129’335 0.9548 0.3380 0.0000
2 0.610 91’395 129’335 0.9501 0.4105 0.0000
3 0.660 88’036 129’335 0.9457 0.4397 0.0000
4 0.623 90’504 129’335 0.9481 0.4215 0.0000
5 0.660 88’003 129’335 0.9417 0.4405 0.0000
6 0.649 88’793 129’335 0.9427 0.4364 0.0000
7 0.646 88’985 129’335 0.9445 0.4350 0.0000
8 0.656 88’310 129’335 0.9482 0.4391 0.0000

Table 1: Summary of the tests for concavity.

times by subtracting in logs a subject’s response time to the marital status question, which
accounts for individual-specific speed and further corroborates the assumption of identical
chronometric functions for the different income groups.

If we are willing to assume that the identical chronometric functions are also linear and
symmetric, we can use (7) to compute one distribution HM for the middle income group and
one distribution HP for the pooled group of low and high incomes and simply compare their
means. Since HP = αHL + (1−α)HH , we can compute the distributions HL and HH in the
low and high income groups separately and then form a convex combination, rather than
actually pooling the data to compute HP . Table 1 contains the results of this approach for
our eight different methods of assigning income levels, which give weights α between 0.50

and 0.66. The mean happiness of the middle income group clearly exceeds that of the pooled
group across all methods.11 This serves as a first indication of concavity of the relationship
between income and happiness but is far from conclusive. In particular, the assumption of
a linear chronometric function is probably not less controversial than the assumption of a
linear reporting function.

To obtain results under less stringent assumptions, we can try to detect if mean happiness
is larger in the middle income group than in the pooled group based on inequality (12).
This inequality is sufficient to detect a ranking of the means and requires only that the
chronometric function is symmetric across responses and identical between groups, not that

11We use response times that are normalized by the marital status question but not by taking the logarithm
here, as taking the logarithm would correspond to a non-linear transformation of the chronometric function
and this matters for the approach. It is irrelevant for the approaches used later in this subsection, so there
we report and depict all results using log normalized response times.
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it is linear. In our context, the inequality becomes

p0MF
0
M(t)− p0PF

0
P (t) ≤ p1MF

1
M(t)− p1PF

1
P (t)

for all t ∈ [t, t], where piPF i
P (t) = αpiLF

i
L(t)+(1−α)piHF i

H(t). The condition intuitively rules
out examples like the increasingly right-skewed distributions discussed above, as these would
generate relatively fast (slow) happy (unhappy) responses in the pooled group.

Figure 3 plots the left-hand side and the right-hand side of (12), again for all the eight
methods used to impute incomes. Inequality (12) is not satisfied exactly in the data, because
the right-hand side falls below the left-hand side for some small t. This indicates that there
are indeed some fast happy responses in the pooled relative to the middle group. However, the
crossing of the functions appears to be minor, so that the question of statistical significance
arises. To obtain p-values for the null hypothesis that (12) holds, we employ a bootstrap-
based method as in Liu and Netzer (2023) that rests on a test for conventional first-order
stochastic dominance by Barrett and Donald (2003). Table 1 shows that the p-values are
very large. We clearly cannot reject (12), which is a sufficient condition for a ranking of the
means in line with decreasing marginal happiness.

If we are even unwilling to accept the assumption of symmetry of the chronometric
functions, we can still test the stronger condition that the happiness distribution of the
middle income group first-order stochastically dominates that of the pooled group. This
condition is formalized by (10) and requires that the functions in Figure 3 are separated
by zero. While not satisfied exactly in the data, the p-values of the null hypothesis that
(10) holds are smaller than for (12) but still large, as can be seen in Table 1.12 We cannot
reject the hypothesis of first-order stochastic dominance and hence of a very strong sufficient
condition for decreasing marginal happiness that applies under weak assumptions on the
chronometric function.

For completeness, Table 1 also reports p-values for the hypothesis that (11) holds, another
sufficient condition for a ranking of the means. This condition is of less interest here. First,
it is very strong and would detect a ranking only if one of the means happened to be smaller
and the other larger than zero. Second, its advantage of allowing group-specific chronometric
functions has no bite because our approach of pooling groups requires identical chronometric
functions (after normalization) anyway. The hypothesis that (11) holds is clearly rejected.

To summarize, our results are supportive of the idea that marginal happiness is decreasing
in income, in a cross-sectional data set. While our tests avoid several of the pitfalls noted at

12The test again follows Liu and Netzer (2023) and implements the procedure of Barrett and Donald
(2003) together with a joint hypothesis correction by Romano and Wolf (2016) to account for the fact that
condition (10) contains two inequalities. We refer the reader to Liu and Netzer (2023) for more details.
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Figure 3: Empirical conditions for detecting the income-happiness relation.

Notes: The curves at the top represent the empirical functions p1MF 1
M(t) − p1PF

1
P (t), while

those at the bottom represent p0MF 0
M(t) − p0PF

0
P (t). Different colors indicate the varying

methods used to determine the average income within each bin.

the beginning of this section, some limitations remain. Most importantly, we were not able
to test concavity of µ at any income level but only for the three income levels implied by the
bins used in the survey, and the detected relation is bivariate without additional controls.

5 Conclusion

The goal of this paper is to provide a systematic account of the information that response time
data contain. We approach the problem by phrasing it as one of identification in the context
of binary response models. Our main result relates the set of identifiable distributional
properties to the set of admissible chronometric functions. The fundamental idea is that
the joint distribution of responses and response times identifies a composition of the latent
distribution and the chronometric function. Properties of the distribution that are preserved
under a given set of transformations can therefore be identified if the chronometric function

32



is known up to these transformations. Several existing results in the literature follow as
corollaries and can be generalized. Many new results emerge. To illustrate the applicability
of our approach, we empirically test and cannot reject the hypothesis of decreasing marginal
happiness of income.

Our theoretical applications in Section 3 are merely examples of the scope of the method
and not an exhaustive list. Additional properties that one could study include general
linear relationships between observable variables and the latent variable like in regression
models, as well as the extent to which responses are potentially distorted by the framing of
a decision problem. Similarly, our empirical study in Section 4 is only one straightforward
application showing how the method can be used to contribute to long-standing debates.
Other applications that we have in mind include the study of polarization using surveys on
political attitudes, as well as optimal product pricing using data on purchase decisions from
online platforms. There are also several possible extensions of our framework that merit
investigation. These include correlations between multiple latent variables, the case with
more than two choice options, and the use of response times in settings where these times
are affected by additional factors like player types or decision modes as in Rubinstein (2007,
2013, 2016).

33



References

Alós-Ferrer, Carlos, and Michele Garagnani. 2022. “Strength of preference and deci-
sions under risk.” Journal of Risk and Uncertainty, 64: 309–329.

Alós-Ferrer, Carlos, and Michele Garagnani. 2024. “Improving Risky-Choice Predic-
tions Using Response Times.” Journal of Political Economy: Microeconomics, 2(2): 335–
354.

Alós-Ferrer, Carlos, Ernst Fehr, and Nick Netzer. 2021. “Time Will Tell: Recovering
Preferences when Choices Are Noisy.” Journal of Political Economy, 129(6): 1828–1877.

Alós-Ferrer, Carlos, Michele Garagnani, and Ernst Fehr. 2023. “Identifying Non-
transitive Preferences.” Mimeo.

Arrow, Kenneth J. 1958. “Rational Choice Functions and Orderings.” Economica,
26(102): 121–127.

Athey, Susan. 2002. “Monotone Comparative Statics Under Uncertainty.” The Quarterly
Journal of Economics, 117(1): 187–223.

Atkinson, Anthony B. 1970. “On the Measurement of Inequality.” Journal of Economic
Theory, 2(3): 244–263.

Barrett, Garry F., and Stephen G. Donald. 2003. “Consistent tests for stochastic
dominance.” Econometrica, 71(1): 71–104.

Benkert, Jean-Michel, and Nick Netzer. 2018. “Informational Requirements of Nudg-
ing.” Journal of Political Economy, 126(6): 2323–2355.

Bond, Timothy N., and Kevin Lang. 2019. “The sad truth about happiness scales.”
Journal of Political Economy, 127(4): 1629–1640.

Card, David, Stefano DellaVigna, Chenxi Jiang, and Dmitry Taubinsky. 2024.
“Understanding Expert Choices Using Decision Time.” Mimeo.

Chabris, Christopher F., Carrie L. Morris, Dmitry Taubinsky, David Laibson,
and Jonathon P. Schuldt. 2009. “The Allocation of Time in Decision-Making.” Journal
of the European Economic Association, 7(2-3): 628–637.

Clithero, John A. 2018. “Improving Out-of-Sample Predictions Using Response Times
and a Model of the Decision Process.” Journal of Economic Behavior and Organization,
148: 344–375.

34



Coffman, Katherine B, Lucas C Coffman, and Keith M Marzilli Ericson. 2017.
“The Size of the LGBT Population and the Magnitude of Antigay Sentiment Are Substan-
tially Underestimated.” Management Science, 63(10): 3168–3186.

Cotet, Miruna, and Ian Krajbich. 2021. “Response Times in the Wild: eBay Sellers Take
Hours Longer to Reject High Offers and Accept Low Offers.” SSRN Discussion Paper No.
3804578.

Cowell, Frank Alan. 2011. Measuring Inequality. Oxford University Press.

Diamond, Peter, and Joseph Stiglitz. 1974. “Increases in Risk and in Risk Aversion.”
Journal of Economic Theory, 8(3): 337–360.

DiMaggio, Paul, John Evans, and Bethany Bryson. 1996. “Have American’s Social
Attitudes Become More Polarized?” American Journal of Sociology, 102(3): 690–755.

Dutta, Indranil, and James Foster. 2013. “Inequality of Happiness in the US: 1972–
2010.” Review of Income and Wealth, 59(3): 393–415.

Easterlin, Richard A. 2005. “Diminishing Marginal Utility of Income? Caveat Emptor.”
Social Indicators Research, 70(3): 243–255.

Echenique, Federico, and Kota Saito. 2017. “Response Time and Utility.” Journal of
Economic Behavior & Organization, 139: 49–59.

Evans, John H. 2003. “Have Americans’ Attitudes Become More Polarized? – An Update.”
Social Science Quarterly, 84(1): 71–90.

Fan, Yanqin, and Andrew J Patton. 2014. “Copulas in Econometrics.” Annual Review
of Economics, 6(1): 179–200.

Fudenberg, Drew, Philipp Strack, and Tomasz Strzalecki. 2018. “Speed, accuracy,
and the optimal timing of choices.” American Economic Review, 108(12): 3651–3684.

Gonçalves, Duarte. 2024. “Speed, Accuracy, and Complexity.” Mimeo.

Guriev, Sergei, and Daniel Treisman. 2020. “The Popularity of Authoritarian Leaders:
A Cross-National Investigation.” World Politics, 72(4): 601–638.

Haile, Philip A., Ali Hortaçsu, and Grigory Kosenok. 2008. “On the Empirical Con-
tent of Quantal Response Equilibrium.” American Economic Review, 98(1): 180–200.

35



Hammond, John S. 1974. “Simplifying the Choice Between Uncertain Prospects Where
Preference Is Nonlinear.” Management Science, 20(7): 1047–1072.

Haugh, Martin. 2016. “An Introduction to Copulas.” Lecture Notes, www.columbia.edu/
~mh2078/QRM/Copulas.pdf.

Hefti, Andreas, Shuo Liu, and Armin Schmutzler. 2022. “Preferences, Confusion and
Competition.” The Economic Journal, 132(645): 1852–1881.

Johnson, Justin P, and David P Myatt. 2006. “On the Simple Economics of Advertising,
Marketing, and Poduct Design.” American Economic Review, 96(3): 756–784.

Kaiser, Caspar, and Andrew J. Oswald. 2022. “Inequality, Well-Being, and the Problem
of the Unknown Reporting Function.” Proceedings of the National Academy of Sciences,
119(50): e2217750119.

Kalmijn, Wim, and Ruut Veenhoven. 2005. “Measuring Inequality of Happiness in
Nations: In Search for Proper Statistics.” Journal of Happiness Studies, 6(4): 357–396.

Kellogg, W. N. 1931. “The Time of Judgment in Psychometric Measures.” American Jour-
nal of Psychology, 43(1): 65–86.

Kendall, Maurice George. 1955. Rank Correlation Methods. New York: Hafner Publishing
Co.

Kiefer, Nicholas M. 1988. “Economic Duration Data and Hazard Functions.” Journal of
Economic Literature, 26(2): 646–679.

Konovalov, Arkady, and Ian Krajbich. 2019. “Revealed strength of preference: Inference
from response times.” Judgment & Decision Making, 14(4): 381–394.

Krajbich, Ian, Bastiaan Oud, and Ernst Fehr. 2014. “Benefits of Neuroeconomic Mod-
eling: New Policy Interventions and Predictors of Preference.” American Economic Review:
Papers & Proceedings, 105(5): 501–506.

Krajbich, Ian, Dingchao Lu, Colin Camerer, and Antonio Rangel. 2012. “The at-
tentional drift-diffusion model extends to simple purchasing decisions.” Frontiers in Psy-
chology, 3. Article 193.

Lelkes, Yptach. 2016. “Mass Polarization: Manifestations and Measurements.” Public
Opinion Quarterly, 80(S1): 392–410.

36



Liu, Shuo, and Nick Netzer. 2020. “Happy times: Identification from ordered response
data.” University of Zurich, Department of Economics, Working Paper No. 371.

Liu, Shuo, and Nick Netzer. 2023. “Happy Times: Measuring Happiness Using Response
Times.” American Economic Review, 113: 3289–3322.

Manski, Charles F. 1988. “Identification of Binary Response Models.” Journal of the
American Statistical Association, 83(403): 729–738.

Maskin, Eric, and John Riley. 2000. “Asymmetric Auctions.” The Review of Economic
Studies, 67(3): 413–438.

Matzkin, Rosa L. 1992. “Nonparametric and Distribution-Free Estimation of the Binary
Threshold Crossing and The Binary Choice Models.” Econometrica, 60(2): 239–270.

Milgrom, Paul R. 1981. “Good News and Bad News: Representation Theorems and Ap-
plications.” The Bell Journal of Economics, 12(2): 380–391.

Moffatt, Peter G. 2005. “Stochastic Choice and the Allocation of Cognitive Effort.” Ex-
perimental Economics, 8(4): 369–388.

Moss, Aaron J, Cheskie Rosenzweig, Jonathan Robinson, and Leib Litman. 2020.
“Demographic Stability on Mechanical Turk Despite COVID-19.” Trends in Cognitive Sci-
ences, 24(9): 678–680.

Moss, Aaron J, Cheskie Rosenzweig, Jonathan Robinson, Shalom N Jaffe, and
Leib Litman. 2023. “Is It Ethical to Use Mechanical Turk for Behavioral Research?
Relevant Data From a Representative Survey of Mturk Participants and Wages.” Behavior
Research Methods, 55(8): 4048–4067.

Moyer, Robert S., and Richard H. Bayer. 1976. “Mental comparison and the symbolic
distance effect.” Cognitive Psychology, 8(2): 228–246.

Oswald, Andrew J. 2008. “On the curvature of the reporting function from objective reality
to subjective feelings.” Economics Letters, 100(3): 369–372.

Palmer, John, Alexander C. Huk, and Michael N. Shadlen. 2005. “The effect of
stimulus strength on the speed and accuracy of a perceptual decision.” Journal of Vision,
5: 376–404.

37



Robinson, Jonathan, Cheskie Rosenzweig, Aaron J Moss, and Leib Litman.
2019. “Tapped Out or Barely Tapped? Recommendations for How to Harness the Vast
and Largely Unused Potential of the Mechanical Turk Participant Pool.” PLoS One,
14(12): e0226394.

Romano, Joseph P., and Michael Wolf. 2016. “Efficient computation of adjusted p-
values for resampling-based stepdown multiple testing.” Statistics and Probability Letters,
113: 38–40.

Rubinstein, Ariel. 2007. “Instinctive and Cognitive Reasoning: A Study of Response
Times.” The Economic Journal, 117: 1243–1259.

Rubinstein, Ariel. 2013. “Response time and decision making: An experimental study.”
Judgment and Decision Making, 8(5): 540–551.

Rubinstein, Ariel. 2016. “A typology of players: Between instinctive and contemplative.”
The Quarterly Journal of Economics, 131(2): 859–890.

Samuelson, Paul A. 1938. “A Note on the Pure Theory of Consumer’s Behaviour.” Eco-
nomica, 5(17): 61–71.

Shaked, Moshe, and J George Shanthikumar. 2007. Stochastic Orders. Springer.

Spearman, Charles. 1904. “The Proof and Measurement of Association Between Two
Things.” The American Journal of Psychology, 15(1): 72–101.

Stevenson, Betsey, and Justin Wolfers. 2008. “Happiness Inequality in the United
States.” The Journal of Legal Studies, 37(S2): S33–S79.

Survey Research Center, Institute for Social Research, University of Michigan.
2021. “Panel Study of Income Dynamics, public use dataset.” Produced and distributed
by the Survey Research Center, Institute for Social Research, University of Michigan, Ann
Arbor, MI.

Vaeth, Martin. 2023. “Voter Learning, Unidimensional Ideology, and Polarization.” Mimeo.

Wang, Tao, and Ehud Lehrer. 2024. “Weighted Utility and Optimism/Pessimism: A
Decision-Theoretic Foundation of Various Stochastic Dominance Orders.” American Eco-
nomic Journal: Microeconomics, 16(1): 210–223.

38



Appendices

A Rationalizability

In this appendix, we study the question of rationalizability of the data: when G ∗ and C ∗

are both restricted sets of distributions and chronometric functions, respectively, does there
exist ((Gj)j, (cj)j) ∈ G ∗ × C ∗ that induces the given data (pj, Fj)j?

We give an answer to this question for the case in which both G ∗ and C ∗ are generated
using sets of transformations with properties like before. Formally, let C ∗ be the maximal
set generated by ((c∗j)j,Ψ), that is,

C ∗ = {(cj)j ∈ C | (cj)j = (c∗j ◦ ψj)j for some (ψj)j ∈ Ψ}.

In words, not only can every (cj)j ∈ C ∗ be derived from (c∗j)j using a composition with some
(ψj)j ∈ Ψ, but the composition of (c∗j)j with any (ψj)j ∈ Ψ yields an element of C ∗. This
requires that ψj(0) = 0 holds for all transformations that are part of Ψ. Analogously, let

G ∗ = {(Gj)j ∈ G | (Gj)j = (G∗
j ◦ ϕj)j for some (ϕj)j ∈ Φ}

be the maximal set generated by ((G∗
j)j,Φ). For example, if (G∗

j)j are strictly increasing cdfs
and Φ is the set of all profiles of strictly increasing transformations, then G ∗ becomes the
set of all profiles of strictly increasing cdfs. If, in addition, (G∗

j)j are symmetric around their
means, then combined with a suitably defined set of symmetric transformations we obtain a
set of profiles of distributions that are also symmetric.

For the following result, denote by Φ ◦Ψ−1 = {(ϕj ◦ψ−1
j )j | (ϕj)j ∈ Φ and (ψ)j ∈ Ψ} the

set of all profiles of functions which are compositions of the elements of Φ and the inverse
elements of Ψ. Any such function is bijective and strictly increasing, hence continuous.

Theorem 2. Let C ∗ and G ∗ be the maximal sets generated by ((c∗j)j,Ψ) and ((G∗
j)j,Φ),

respectively. Then, data (pj, Fj)j is rationalizable if and only if there exists (Lj)j ∈ Φ ◦Ψ−1

such that (G∗
j ◦ Lj)j = (Hj)j.

Proof. Only-if-statement. Suppose there exists ((Gj)j, (cj)j) ∈ G ∗×C ∗ that induces (pj, Fj)j.
As shown in the proof of Theorem 1, there exists (ψj)j ∈ Ψ such that (Hj)j = (Gj ◦ ψ−1

j )j,
because ((c∗j)j,Ψ) generates C ∗. It also holds that there exists (ϕj)j ∈ Φ such that (Gj)j =

(G∗
j ◦ϕj)j, because ((G∗

j)j,Φ) generates G ∗. Now define Lj = (ϕj ◦ψ−1
j ) for all j ∈ J , so that

(Lj)j ∈ Φ ◦Ψ−1 holds. Furthermore,

(G∗
j ◦ Lj)j = (G∗

j ◦ ϕj ◦ ψ−1
j )j = (Gj ◦ ψ−1

j )j = (Hj)j.
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If-statement. Suppose there exists (Lj)j ∈ Φ ◦Ψ−1 that satisfies (G∗
j ◦ Lj)j = (Hj)j. Let

(ϕj)j ∈ Φ and (ψj)j ∈ Ψ be such that (Lj)j = (ϕj ◦ ψ−1
j )j. Then (Gj)j := (G∗

j ◦ ϕj)j ∈ G ∗

because G ∗ is the maximal set generated by ((G∗
j)j,Φ), and (cj)j := (c∗j ◦ ψj)j ∈ C ∗ because

C ∗ is the maximal set generated by ((c∗j)j,Ψ). The data induced by ((Gj)j, (cj)j) are, for all
t ∈ [t, t] and j ∈ J ,

p̂0j F̂
0
j (t) = Gj((c

0
j)

−1(t))

= G∗
j(ϕj((c

0
j)

−1(t)))

= G∗
j(ϕj(ψ

−1
j ((c∗,0j )−1(t))))

= G∗
j(Lj((c

∗,0
j )−1(t)))

= Hj((c
∗,0
j )−1(t))

= p0jF
0
j (t),

where the third equality has been established in the proof of Theorem 1. The analogous
argument shows that ((Gj)j, (cj)j) induces also p1jF 1

j (t), hence the data is rationalizable.

For rationalizability, we need to check whether there exist functions (Lj)j ∈ Φ ◦ Ψ−1

which satisfy the implicit condition

G∗
j(Lj(x)) = Hj(x) for all x ∈ R.

This is easier than it may appear. For example, if both Hj and G∗
j are strictly increasing,

then the candidate Lj is unique and given by Lj = (G∗
j)

−1 ◦ Hj, which is a bijective and
strictly increasing function based on observables. It remains to be checked whether this
function can be written as an admissible composition ϕj ◦ ψ−1

j . This is always the case,
for example, if Φ is the unrestricted set of all profiles of transformations, because Φ ◦ Ψ−1

is unrestricted in that case as well. In other cases, the function Lj will be unique in some
intervals and can be extended outside these intervals in a way that guarantees bijectivity and
monotonicity. One then needs to check whether Lj coincides with an admissible composition
ϕj ◦ ψ−1

j wherever it is uniquely defined.
Other cases are even easier. For example, if Hj takes the value 0 for finite values x < 0

but G∗
j does not, then a function Lj satisfying G∗

j ◦ Lj = Hj cannot be strictly increasing
and hence cannot be a composition ϕj ◦ψ−1

j . This implies that the data is not rationalizable.
Intuitively, since G∗

j extends to infinity and the data has no atoms at response time t, it can
only be rationalized by a chronometric function that satisfies cj(x) > t for all x < 0, and
hence Hj cannot reach 0.
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B Ranking of Means

In this appendix, we show that the inequality G1(x) + G1(−x) ≤ G2(x) + G2(−x) for all
x ∈ R+ implies that the mean of G1, denoted µ1, is larger than the mean of G2, denoted µ2

(assuming that both means exist). Using the fact that

µj = −
∫ 0

−∞
Gj(x)dx+

∫ +∞

0

[1−Gj(x)]dx,

we have

µ1 − µ2 =

∫ 0

−∞
[G2(x)−G1(x)]dx+

∫ +∞

0

[1−G1(x)− 1 +G2(x)]dx

=

∫ +∞

0

[G2(−x)−G1(−x)]dx+
∫ +∞

0

[G2(x)−G1(x)]dx

=

∫ +∞

0

[G2(x) +G2(−x)−G1(x)−G1(−x)]dx ≥ 0.

C Decreasing Marginal Happiness

The survey of Liu and Netzer (2023) has income data in three broad bins: below $40’000,
between $40’000 and $69’999, and above $70’000. We describe the eight different methods
that we use to put a unique value on each of these bins. The first three methods use the
midpoints of the bins, with different upper bounds on the open-ended top bin. Method
4 predicts each subject’s income based on observable covariates and uses these predictions
for averaging within each bin. The last four methods use information about the income
distribution of MTurk subjects from different sources to derive the average income in each
bin. Table 2 summarizes the implied incomes and weights associated with each method.

Methods 1-3. We use the midpoints of the bins to assign a unique value to each bin. The
difference between the three methods is the upper bound on the open-ended top bin. Method
1 uses an upper bound of $110’000, method 2 uses an upper bound of $150’000, and method
3 uses an upper bound of $200’000. The resulting incomes associated with each bin are then
$20’000 and $55’000 for the low and middle bins, respectively, and $90’000, $110’000, and
$135’000 for the high bin in methods 1, 2, and 3, respectively. The weights α and 1− α are
chosen such that the weighted average of the low and high bin is equal to the middle bin.
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Method Implied Incomes: (wL, wM , wH) Weights: (α, 1− α)

1 (20′000, 55′000, 90′000) (0.500, 0.500)
2 (20′000, 55′000, 110′000) (0.610, 0.390)
3 (20′000, 55′000, 135′000) (0.660, 0.340)
4 (39′334, 68′013, 115′459) (0.623, 0.377)
5 (23′172, 53′048, 111′167) (0.660, 0.340)
6 (25′094, 54′381, 108′469) (0.649, 0.351)
7 (22′627, 53′979, 111′161) (0.646, 0.354)
8 (23′318, 54′125, 112′854) (0.656, 0.344)

Table 2: Summary of methods for constructing incomes (rounded to thousands).

Method 4. We augment the survey data from Liu and Netzer (2023) with 2021 PSID data
(Survey Research Center, 2021), where we use the following variables:

• ER81775 “TOTAL FAMILY INCOME-2020”

• ER78018 “SEX OF REFERENCE PERSON”

• ER78017 “AGE OF REFERENCE PERSON”

• ER78021 “# CHILDREN IN FU”

• ER78025 “REFERENCE PERSON MARITAL STATUS”

• ER81926 “COMPLETED ED-RP”

Based on the these variables, we estimate a simple linear wage model, regressing income
on gender, age, kids, marital status, and education, where we recode the variables so coding
and definition match the corresponding variables obtained in the survey. The estimation
results then allow us to predict the income of each subject in the survey. We correct these
estimates whenever they fall outside the bin that the subject reported to be in, by setting the
value equal to the lower or upper bound of the bin, respectively. We use these predictions
to determine the average income for each bin. The weights α and 1−α are chosen such that
the weighted average of the low and high bins is equal to the middle bin.

Methods 5-8. We use more granular income data about MTurk subjects drawn from the
studies conducted in Robinson et al. (2019), Moss et al. (2023), and Moss et al. (2020) to
determine the average income in each bin of the survey of Liu and Netzer (2023). These
studies contain finer bins of income data. For each of these bins, we determine the average
using the midpoint approach as in method 1, using an upper bound on the open-ended top

42



bin of $200’000 for the first three studies and $300’000 for the last study. The weights α
and 1−α are chosen such that the weighted average of the low and high bins is equal to the
middle bin.
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