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1 Introduction
Recommendations play an essential role for the diffusion of economic information. Job ap-
plicants frequently rely on assessments of potential employers by their friends. Conversely,
job candidates often have to provide letters of recommendation from former employers.
Consumers may base their choices of travel destinations, restaurants, or doctors on what
they have heard from their acquaintances. In the digital economy, product ratings, typi-
cally reflecting anonymous consumer reports, are omnipresent.

Despite their relevance, recommendations are unlikely to function smoothly. For in-
stance, too few recommendations may be given (Che and Hörner, 2018; Kremer, Man-
sour, and Perry, 2014), recommenders may be positively selected (Acemoglu, Makhdoumi,
Malekian, and Ozdaglar, 2022), and interested parties might interfere with the process
by choosing which recommendations to publish (Bolton, Greiner, and Ockenfels, 2013;
Tadelis, 2016). In the literature, it is common to make the simplifying assumption that
product qualities can be objectively ranked.1 Instead, our paper assumes that preferences
are heterogeneous, in which case product qualities cannot be objectively ranked and rec-
ommendations may be hard to interpret, even without strategic biases. We ask whether
and how recommendations can be useful in spite of preference heterogeneity. Even well-
intended recommendations by non-strategic players may reflect the senders’ preferences
rather than the objective truth. A receiver who does not question the informational
content of a recommendation may therefore make biased decisions.

To motivate our approach, consider a consumer’s choice between medical doctors.
This is a complex problem, as the perceived quality of medical care will typically depend
on many aspects. How carefully does a doctor listen to the patient? Is the technical
equipment up to date? Is the staff friendly? How crowded is the waiting room? More-
over, different people may weigh different aspects differently. Despite such preference
heterogeneity, rather than randomly choosing a doctor, people often base their decision
on recommendations. Importantly, senders have limited stakes in the process and there-
fore lack incentives to think through the effects of their recommendation carefully. By
contrast, adequately using the information can be crucial for the receiver. Finally, even if
the sender is willing to think through the recommendation carefully, it will typically not
be possible to convey all relevant information. For all these reasons, it is not obvious why
or when recommendation can be useful.

This example illustrates three key features of our theory of recommendations:

Heterogeneity of Products and Preferences: Products come in different versions
and consumers value them differently.
Asymmetry of Stakes: Making sure that the recommendation is not misunderstood is
more important for the receiver than for the sender.
Coarseness of Recommendations: The sender is unable to provide enough detail for
all relevant aspects of the service to become fully transparent to the receiver.

These features will be even more salient for ratings provided on internet platforms, as
such ratings usually do not come from close acquaintances. Hence, the receivers should
consider that senders have preferences which differ from their own and are likely to give
an incomplete account of their consumption experience without exerting much effort.
Backing out the implications of the recommendation for the receiver’s own decision is

1See also Che and Hörner (2018) and Hui, Klein, and Stahl (2023).
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therefore a complex task. Relevant considerations for the interpretation are these: To
what extent does the recommendation contain objective truth? And when it does not,
how likely is it that the preferences of the sender and receiver are aligned? The answers
to these questions will determine whether it is in the receiver’s interest to accept the
recommendation and how valuable it is.

Our model captures the above three features of recommendations in the simplest
possible way. An agent must decide between several options, referred to as products for
ease of exposition. Products are two-dimensional objects, differing only in whether they
have high or low quality in each dimension. Thus, four product versions exist. There
is a continuum of agent types. All types agree that a product is worth choosing if it
has high quality in both dimensions and is thus (objectively) good. Conversely, they
agree that a product is not worth choosing if it has low quality in both dimensions and
is thus (objectively) bad. Accordingly, we call the products uncontroversial in both of
these cases. By contrast, we refer to products as controversial when they have high
quality in one dimension and low quality in the other. An agent prefers a controversial
product that has high quality in the dimension that is more relevant for them, and is thus
subjectively good, to a product that has high quality only in the less-relevant dimension
(thus subjectively bad). Moreover, even agents who agree about which controversial
product they prefer may differ in the intensity of these preferences (as captured by the
continuous type distribution).

We assume that products are experience goods so that each agent only has stochastic
knowledge of the quality distribution before consumption: They know the probability of
each product version. The agent obtains a recommendation from a previous consumer of
one of the products. The recommendation reveals whether the sender had a consumption
experience that was sufficiently good (a buy recommendation), with payoffs above an
exogenous threshold level R, or not (a don’t-buy recommendation). Independent of R,
the sender (she) always gives a buy recommendation for a good product and a don’t-
buy recommendation for a bad product. In addition, she sends a buy recommendation
for a controversial product if her preferences for the product are strong enough. In line
with her low stakes in the issue, the sender thus only provides a coarse description of
her own consumption experience. By contrast, the receiver (he) of the recommendation,
with his high stakes in the issue, will carefully evaluate the informational content of the
recommendation using Bayesian inference, taking into account the distribution of product
qualities, his own preferences, and those of the population.

In this framework, we address a variety of questions: How do recommendations create
value for receivers, how can we interpret this value, and when is it maximal? If one could
influence the payoff threshold beyond which a sender gives a buy recommendation, how
high should it be? Are recommendations valuable even when uncontroversial products
are unlikely? How does the value depend on how polarized the population is?

To answer these questions, we need to derive intermediate results of independent
interest. Most importantly, we investigate under which conditions receivers accept all
recommendations. We find that for a Bayesian expected-payoff maximizer, two key quan-
tities measuring the objective and subjective content of the recommendation are decisive
for receiver behavior. These quantities are simple functions of the model primitives. In-
tuitively, the objective informational content of a recommendation is high if it makes the
product sufficiently more likely to be (objectively) good and less likely to be bad. The
subjective content captures the effect of the recommendation on the relative probability
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of the two controversial product versions. The evaluation of the subjective content thus
depends on the receiver’s type. When the recommendation bears little or no subjective
content, all types accept all recommendations, thus buying after a buy recommendation
and choosing the outside option (one of the other alternatives) after a don’t-buy recom-
mendation. As the subjective content increases, revealing that one of the two controversial
product versions becomes more likely, only receivers without strong preferences for the
other version accept all recommendations. When the recommendation threshold R ap-
proaches the maximal payoff, a buy recommendation essentially becomes objective, and
similarly for a don’t-buy recommendation when R approaches the minimal payoff. As
receivers are aware of this, they accept all recommendations in each of these polar cases
since the subjective component vanishes.

Based on this analysis, we then study the value of recommendation systems. We think
of this value as the expected-payoff increase of a randomly chosen receiver resulting from
a recommendation given by a randomly chosen sender. When the recommendation is
objective, or the subjective content is small, the analysis is comparatively simple: As all
receivers accept all recommendations, they choose the outside option after a don’t-buy
recommendation, just as if they had not received any recommendation at all. Therefore,
only buy recommendations create value—they do so by inducing the receiver to purchase
the product if it generates a higher expected payoff for him than the outside option. When
the recommendation contains more subjective content, only a subset of the receivers accept
it, rendering the analysis more complex. The value of the recommendation system then
has two sources. First, receivers who accept all recommendations benefit because they
expect the recommended product to be better than the outside option. Second, receivers
who never accept recommendations benefit from buying the product in spite of a don’t-
buy recommendation: These receivers have preferences that are not well aligned with the
general population so that the don’t-buy recommendation provides good news about the
chances of obtaining a subjectively good product rather than one they like less.

Next, we turn to the design of recommendation systems. Motivated by the practice
of digital platforms, we consider the recommendation threshold R as a design variable.
When the type distribution is symmetric, so that there is no preference bias on average,
the value of the recommendation system is a monotone function of the threshold. If the
value is increasing, the product optimally receives a buy recommendation only if it is
good; if the value is decreasing, the product optimally receives a don’t-buy recommenda-
tion only if it is bad. The former case arises if good products are more likely ex ante than
bad products are, and conversely for the latter case. Either way, the content of the recom-
mendation essentially becomes objective. In contrast, with an asymmetrically distributed
population, value maximization does not necessarily require an extreme threshold. Rather
than revealing only whether a product is good or bad, it may be optimal for the sender
to give a buy recommendation even if the product is controversial but sufficiently aligned
with her preferences. Intuitively, giving up the exclusive focus on objective content makes
sense when both controversial product versions are common and there is broad agreement
on which of them is preferable. By contrast, extreme recommendation thresholds that
only reveal objective content are still desirable if the product is much more likely to be
objectively good than objectively bad or vice versa.

We then discuss further determinants of the value of the recommendation system, as-
suming that the population is symmetric. First, we find that an increase in the probability
of controversial products lowers the value only if the probabilities of the two controversial
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versions are similar. Second, whether a mean-preserving spread in the population dis-
tribution (corresponding to a more polarized population) increases the value of a given
recommendation system depends on how strict the recommendation threshold is and on
how common good products are relative to bad ones.

Finally, we show the robustness of our results. With mild adjustments, the main in-
sights continue to hold when sender and receiver distributions are distinct—a situation
that could arise because, for instance, recommendations stem from early adopters who
do not represent the population at large. This also has non-trivial design implications:
Our results on the relation between mean-preserving spreads can be adapted to show how
a designer would want to choose the sender distribution, which may be at least partly
under his control. Second, we allow for more than two types of recommendations. Again,
extreme recommendation thresholds increase the probability that a recommendation has
objective content and thus increase the value of the system when the population is sym-
metrically distributed. Third, we show that having access to many recommendations does
not necessarily change receiver behavior compared to the case of a single recommendation
with an optimal threshold. Then, having access to multiple recommendations does not
increase the value.

Section 2 relates the paper to the literature. Section 3 introduces the model and dis-
cusses its key assumptions. In Section 4, we describe the conditions under which different
receiver types accept all recommendations. Then, in Section 5 we first characterize the
value of a recommendation system before investigating the determinants of the value and
the design of value-maximizing systems. Section 6 discusses our results and considers
extensions. Section 7 concludes. All proofs are relegated to the appendix.

2 Relation to the Literature
Our paper investigates frictions in recommendation systems arising from preference het-
erogeneity, emphasizing the behavior of receivers. By contrast, the literature has mainly
focused on frictions on the sender side.

Public Goods Problems Research on recommendation systems often deals with the
exploration-exploitation dilemma and its implications for providing recommendations, in-
terpreted as the provision of a public good. Several authors argue that consumers usually
neglect the positive externalities generated by their reviews, leading to insufficient explo-
ration and reviewing, in particular for lesser-known niche products (e.g., Kremer et al.
(2014) and Che and Hörner (2018)). Expanding on these papers, Vellodi (2022) consid-
ers the impact on market structure, showing how unbiased reviews might disadvantage
entrants due to the “cold start” problem, thereby reinforcing the monopoly position of
incumbents. These studies view the design of the recommendation system as the solution
of a public goods problem by appropriate information management.2

Sender Selection The selection of recommenders is another source of frictions in rec-
ommendation systems. In their analysis of the learning dynamics resulting from recom-

2For example, Kremer et al. (2014) and Che and Hörner (2018) suggest reducing transparency or
endorsing yet-to-be-proven products, while Vellodi (2022) supports the idea of withholding reviews from
incumbents to encourage new participants.
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mendations, Acemoglu et al. (2022) argue that consumers with strong initial preferences
for a product are more likely to purchase it.3 Recommendations thus inevitably carry an
inherent bias reflecting the predispositions of the recommender pool.4 Receivers should
recognize this bias rather than accepting recommendations at face value. Our paper
intersects with theirs by highlighting the significance of preference heterogeneity for in-
terpreting recommendations. However, contrary to Acemoglu et al. (2022), we focus on
the determinants of the value of recommendation systems and the design of those systems
rather than the possibility and speed of learning.5

Non-truthful Recommendations and Strategic Manipulations Strategic actions
of recommenders, firms, and platforms may further reduce the value of recommendations
for consumers. Bolton et al. (2013) have shown that eBay users often refrain from neg-
ative feedback to avoid retaliation.6 Like us, Chakraborty and Harbaugh (2010) assume
that the sender possesses multidimensional information. They show how this helps her
influence the behavior of the receiver in spite of a common bias. Instead, we emphasize
the effects of preference heterogeneity without strategic behavior, assuming that senders
mechanically provide truthful recommendations. In contrast with our model with con-
sumer recommendations, in Peitz and Sobolev (forthcoming) and Johnen and Ng (2024)
firms engage in sophisticated strategies to inflate their ratings.7 More closely related
to our paper, Bourreau and Gaudin (2022) consider incentives for firms to manipulate
recommendations in a setting with heterogeneous preferences.

3 Model
We begin by introducing the assumptions of our benchmark model in Section 3.1. Then,
in Section 3.2, we discuss and motivate these assumptions.

3.1 Assumptions

Products and Payoffs We consider a consumer’s choice of a product from a set of
alternatives N ∈ N with N > 1. We assume that each product is fully characterized by a
two-dimensional quality vector, where Qd = 1 and Qd = 0 capture high and low quality,
respectively, in dimension d ∈ {1, 2}. Accordingly, four different product versions exist.

3In contrast to our paper, their question is essentially whether and how fast consumers find out if the
product is good or not, an assessment with which all consumers agree. Beyond that, we model preference
heterogeneity differently.

4In Section 6.1, we allow for distinct sender and receiver populations and thus for the possibility of a
bias among the recommenders relative to the overall population.

5In Section 6.3, we introduce multiple recommendations, as do Acemoglu et al. (2022), but, in contrast
to them, we ask under which conditions multiple recommendations enhance system value.

6Tadelis (2016) discusses the design implications of these issues—using the example of eBay deciding
to refrain from allowing seller evaluations of buyers—and also touches on strategic motives in recommen-
dations more generally.

7Peitz and Sobolev (forthcoming) investigate firm-driven recommendations and the choice of sales
channel: targeted (with recommendation) or non-targeted. They identify motives behind “inflated rec-
ommendations,” where the firm also recommends welfare-reducing bad product matches. Johnen and
Ng (2024) analyze a related phenomenon, where firms initially lower prices to attract positive ratings,
later leveraging these ratings to justify price increases—effectively reducing the reliability of ratings as a
quality indicator.
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We assume that the products are experience goods. Thus, the consumer cannot observe
product quality before consumption, so the alternatives are identical for him ex ante.
However, he knows the prior distribution of the quality vectors, referred to as quality
distribution for brevity. Consumers have heterogeneous preferences fully characterized by
their type i ∈ [−1/2, 1/2]. A consumer of type i receives a payoff of

v(Q1, Q2, i) = (1/2 + i)Q1 + (1/2− i)Q2

from consuming (Q1, Q2).8 Thus, possible payoffs range from 0 to 1, with all consumers
obtaining the highest payoff, 1, from consuming version (1, 1) and the lowest payoff, 0,
from consuming (0, 0). Therefore, consumers agree that product versions (1, 1) and (0, 0)
are (objectively) good and bad, respectively. By contrast, the payoff from consuming
(1, 0) or (0, 1) depends on a consumer’s type i so that the assessment of (1, 0) and (0, 1)
is subjective. We thus refer to products with these quality vectors as controversial. Con-
sumers of type i > 0 prefer (1, 0) to (0, 1), and vice versa for i < 0. Those of type i = 0
are indifferent between these two versions.

The distribution of consumer types is denoted by F . For now, we leave the distribution
unspecified but for simplicity assume continuity and full support. Finally, the quality
distribution is given as q = (qH , q1, q2, qL) where

Pr[(Q1, Q2) = (1, 1)] = qH , Pr[(Q1, Q2) = (1, 0)] = q1,

Pr[(Q1, Q2) = (0, 0)] = qL, Pr[(Q1, Q2) = (0, 1)] = q2.

We assume that q > 0 unless mentioned otherwise.

Recommendations and Updating We assume that one of the products comes with
a recommendation. The receiver has to choose between this product and an alternative
without a recommendation. We distinguish between buy recommendations (r = B) and
don’t-buy recommendations (r = D). Moreover, r = 0 corresponds to the case without
recommendation. In the benchmark model, we assume that the senders (she) and receivers
(he) of recommendations are both randomly drawn from F .

To eliminate any scope for strategic behavior of the sender, we assume that she me-
chanically gives a buy recommendation if she obtained a payoff of at least R ∈ (0, 1) and
a don’t-buy recommendation otherwise.9 As good products (version (1, 1)) yield a payoff
of 1, they always result in a buy recommendation, whereas bad products (version (0, 0))
always yield a don’t-buy recommendation. The sender’s type determines the recommen-
dation for a controversial product: After having consumed (1, 0), a sender of type i gives
a buy recommendation if and only if i ≥ R− 1/2, whereas only senders with i ≤ 1/2−R
give a buy recommendation after consuming (0, 1). All told, a recommendation can reflect
objective and subjective considerations.

We assume that receivers are Bayesian, updating beliefs about product quality after
having obtained a recommendation while taking into account the uncertainty about its
informational content. We define πB(R) and πD(R) as the probability that a randomly

8For convenience, we identify a product version with the corresponding quality vector.
9We exclude the threshold R = 0 as this would render the recommendation uninformative. For

symmetry, we have also excluded R = 1, but all results would essentially go through if we allowed R = 1.
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Figure 1. Illustration of Sender Behavior

−1/2 0 1/4 1/2
Product version (1, 0)

−1/2 −1/4 0 1/2
Product version (0, 1)

Notes: The figure illustrates what types send a buy recommendation (green) and a don’t-buy
recommendation (red) for the two controversial product versions when the threshold is R = 3/4. For
instance, in the top line corresponding to product version (1, 0), the payoff obtained by a sender of type
i is 1/2 + i, so types such that 1/2 + i ≥ 3/4 ⇔ i ≥ 1/4 give a buy recommendation.

chosen sender gives a buy or don’t-buy recommendation, respectively. Clearly,

πB(R) := qH + q1ϕ1(R) + q2ϕ2(R),

πD(R) := q1(1− ϕ1(R)) + q2(1− ϕ2(R)) + qL,

where πD(R) = 1−πB(R), and ϕ1(R) := 1−F (R−1/2) and ϕ2(R) := F (1/2−R) denote
the probability of a buy recommendation conditional on the product version being (1, 0)
or (0, 1), respectively. In words, the probability of receiving a buy recommendation from a
randomly chosen sender is given by the sum of the probability that a product is objectively
good and the probability that it is subjectively good enough from a randomly chosen
sender’s perspective. Thus, accepting a buy recommendation the receiver’s posterior
pB(R) := (pBH(R), pB1 (R), pB2 (R), pBL (R)) becomes

pBH(R) :=
qH

qH + q1ϕ1(R) + q2ϕ2(R)
, pB2 (R) :=

q2ϕ2(R)

qH + q1ϕ1(R) + q2ϕ2(R)
,

pB1 (R) :=
q1ϕ1(R)

qH + q1ϕ1(R) + q2ϕ2(R)
, pBL (R) := 0.

A don’t-buy recommendation gives rise to pD(R) := (pDH(R), pD1 (R), pD2 (R), pDL (R)), where

pDH(R) := 0, pD2 (R) :=
q2(1− ϕ2(R))

q1(1− ϕ1(R)) + q2(1− ϕ2(R)) + qL
,

pD1 (R) :=
q1(1− ϕ1(R))

q1(1− ϕ1(R)) + q2(1− ϕ2(R)) + qL
, pDL (R) :=

qL
q1(1− ϕ1(R)) + q2(1− ϕ2(R))) + qL

.

In the above expressions πB(R), pB(R), etc., we will typically drop the dependence on R
to simplify notation. Finally, we use the following summary terminology:

Definition 1 E := (q, F ) defines a decision environment. A recommendation sys-
tem R consists of a decision environment E and a recommendation threshold R ∈ (0, 1).

3.2 Discussion of the Framework

Our theory of recommendations incorporates three key features: heterogeneity of products
and preferences, coarseness of recommendations, and asymmetry of stakes between senders
and receivers. We now discuss how our model addresses these and further points.
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Heterogeneity of Products and Preferences Without controversial products or
preference heterogeneity, the analysis would become trivial. The case without contro-
versial products would correspond to q1 = q2 = 0. Then, for arbitrary R ∈ (0, 1), buy
recommendations would reveal that the product is good, while don’t-buy recommenda-
tions would reveal that it is bad. Thus, there would be no friction in the recommendation
system and no role for design considerations. With controversial products but absent
preference heterogeneity, all consumers would have the same type i∗. Assuming w.l.o.g.
that i∗ ≥ 0, senders would send a buy recommendation (i) only after consuming a good
product if R > 1

2
+ i∗, (ii) after consuming a good product or a controversial product of

version (1, 0) if 1
2
+ i∗ ≥ R > 1

2
− i∗, and (iii) after consuming the good product or any of

the controversial products if 1
2
− i∗ ≥ R. The first-best could be induced by the appro-

priate choice of the recommendation threshold, taking into account how the payoffs from
controversial products compare to the expected payoff from the outside option, In sum, a
meaningful analysis requires controversial products as well as preference heterogeneity.

Coarse Information Transmission With a single threshold above and below which
senders give buy and don’t-buy recommendations, respectively, it is impossible to always
reveal the product version. Thus, as desired, recommendations provide coarse information.
If, in contrast, the sender could give four different ratings depending on the consumption
experience, full revelation would be possible in our parsimonious model with only four
product versions. In reality, recommendations can convey more content than whether a
buyer liked a product or not, for instance, by including verbal descriptions. However,
given the typical complexity of products, even relatively detailed recommendations will
usually only transmit coarse information.

Asymmetry of Stakes To capture the sender’s limited stakes in the process, we assume
that she behaves truthfully, mechanically reporting whether her consumption experience
was good enough or not. More sophisticated and potentially strategic recommendations
seem at odds with the lack of incentives to invest in this reporting activity, which results
in the underprovision of recommendations (see the literature review).

Recommendation Threshold Our preferred way of thinking about the recommen-
dation threshold is as a design parameter. To motivate this, we rely on Decker (2022)
who argues that Airbnb advises its customers to give a five-star rating to every host that
provides reasonably good services, thus reserving lower ratings exclusively to very bad
hosts.10 In this spirit, we think of the threshold as reflecting the guidance of a platform
such as Airbnb or as a social norm that is being actively shaped.

Other Recommendation Systems Assuming that senders mechanically provide a
binary recommendation is adequate in view of their limited willingness to invest more
time into giving a recommendation. Nonetheless, one could imagine more sophisticated
recommendation systems. For instance, the sender might recommend a product when it
is either good or when it is controversial but preferred by most of the population. This,

10In our setting, this approach corresponds to the use of a coarse recommendation system, with the
vast majority of hosts receiving a buy recommendation and a small subset receiving a don’t-buy rec-
ommendation. The recommendation threshold would then be close to R = 0 so that products with a
don’t-buy recommendation are typically objectively bad.
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however, presupposes a sender with detailed information about the receiver’s decision en-
vironment. Instead, the sender could give a buy recommendation when the average payoff
she expects receivers to obtain from consuming the product in question is higher than for
the outside option. In that case, the expected value of the outside option would determine
the recommendation threshold, which would then no longer be a design parameter.

Product Ranking When qH > 0 and qL > 0, all types agree on which product version
is the best and which is the worst because their utility is fully determined by the qualities
in each dimension and is increasing in each of them. In other environments, no products
are objectively the best or the worst. For instance, there would be no such products in a
modified version of our setting where qH = 0 and qL = 0, as the valuations for (1, 0) and
(0, 1) are perfectly negatively correlated. We nonetheless keep the specific feature of the
model because we believe it covers a wide range of plausible scenarios.

4 Optimal Receiver Behavior
In this section, we ask under which circumstances a receiver will accept all recommen-
dations, depending on his type i and the recommendation system R, as introduced in
Definition 1. In Section 4.1, we discuss through which channels recommendations affect
beliefs, distinguishing between the objective and subjective content of the recommenda-
tions. Section 4.2 then characterizes the optimal behavior of the receiver by identifying
thresholds which divide the type set into receivers that accept all recommendations and
those that never do.

4.1 The Effects of Recommendations on Beliefs

Recommendations contain coarse information about the product under consideration,
leading the receiver to update his beliefs about its quality. We first focus on buy recom-
mendations, the total effect of which can be decomposed as follows:11

(I) The probability of a bad product falls to zero.

(II) A good product becomes more likely relative to the controversial products.

(III) The odds between the controversial products change.

The first two effects in this belief-updating decomposition are objectively positive: They
correspond to increases of the expected payoff for every receiver type, albeit of different
sizes. By contrast, the third effect is fully type-dependent and thus subjective, resulting
in an increase in the payoff for some receivers and a decrease for others.

The effects of don’t-buy recommendations are analogous to those of buy recommenda-
tions: First, the probability of a good product falls to zero; second, bad products become
more likely relative to controversial products, and third, the odds between the contro-
versial products change. Thus, again, the recommendation has two objective effects (but
these are both bad now) and a subjective effect (which can be good or bad, depending on
the receiver’s type).

11In Appendix A.1, we provide a more formal analysis, decomposing the difference between posteriors
and priors into three corresponding components.
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4.2 Characterizing Optimal Receiver Behavior

We are now in a position to understand whether it is optimal for the receiver to accept
recommendations. To this end, note that, after receiving a recommendation, the receiver
can either buy the recommended product or not buy it. Denote by UB(i) and UD(i)
player i’s expected payoff of buying a product with a buy and don’t-buy recommendation,
respectively, and by U0(i) the expected payoff of not buying, i.e., of buying the alternative
product with no recommendation. We have

U r(i) := prH + (1/2 + i)pr1 + (1/2− i)pr2, r ∈ {B,D};
U0(i) := qH + (1/2 + i)q1 + (1/2− i)q2.

Now, the difference between U r(i) and U0(i) determines the behavior of an expected-payoff
maximizing receiver as follows.

Definition 2 We say that a receiver i

(i) accepts a buy recommendation if UB(i) ≥ U0(i); otherwise we say that he does not
accept a buy recommendation;

(ii) accepts a don’t-buy recommendation if U0(i) ≥ UD(i); otherwise we say that he does
not accept a don’t-buy recommendation

(iii) accepts all recommendations if he accepts both buy and don’t-buy recommendations;

(iv) never accepts recommendations if he does not accept either buy and don’t-buy rec-
ommendations.

Hence, a receiver who accepts all recommendations “does as he is told”, whereas a receiver
who never accepts recommendations is a “contrarian” who does the opposite of what he is
told.12 Note that the above definition does not cover all conceivable types of behavior, as a
receiver i could accept buy recommendations and not accept don’t-buy recommendations,
which is tantamount to always buying the recommended product and thus ignoring the
content of the recommendations. Analogously, a receiver i could ignore the content of the
recommendations and never buy the recommended product. We will return to these cases
shortly.

The condition from Definition 2(i) for receiver i to accept a buy recommendation can
equivalently be written as

pBH − qH +
pB1 − q1

2
+

pB2 − q2
2

≥ i[(pB2 − q2)− (pB1 − q1)]. (1)

For more compact formulations, we introduce the following terminology.

Definition 3

(i) The objective effect of a recommendation r is defined as

∆r
O := prH − qH +

pr1 − q1
2

+
pr2 − q2

2
. (2)

12The use of the term aligns with Drehmann, Oechssler, and Roider (2005), who document contrarian
behavior, i.e., investors going against the behavior of the predecessors, in an financial-markets experiment.
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(ii) The subjective effect of a recommendation is defined as

∆r
S := (pr2 − q2)− (pr1 − q1). (3)

We can now restate condition (1) about accepting a buy recommendation as

∆B
O ≥ ∆B

S i. (4)

We use this formulation to justify our terminology. Intuitively, the subjective effect sum-
marizes whether and how the recommendation shifts probability between the controversial
products, with ∆r

S > 0 corresponding to a shift from (1, 0) to (0, 1), and conversely for
∆r

S < 0.13 The payoff effect of this shift depends on the agent’s type i and is therefore
subjective. Moreover, for the unbiased receiver i = 0, equation (4) simplifies to ∆B

O ≥ 0.
As this receiver does not care about the shift in probabilities between the two controver-
sial versions of the products, ∆B

O ≥ 0 fully reflects the two objective effects (I) and (II)
in the belief-updating decomposition in Section 4.1. For i ̸= 0, the issue is more subtle.
As long as q1 = q2, the expected payoff conditional on the information that a product
is controversial is 1/2 for all i and thus type-independent. Therefore, all types gain the
same amount from (I) learning that a product is good or controversial instead of bad; the
same applies to (II) learning that a product is good instead of controversial. For q1 = q2,
∆B

O therefore exactly captures these two type-independent (and thus objective) effects of
a buy recommendation.14 For i ̸= 0 and q1 ̸= q2, the issue is complicated further. Though
the effects captured by (I) and (II) in Section 4.1 are positive for all types, their size
depends on the receiver’s type. Intuitively, if one of the controversial product versions
(say (1, 0)) is more likely than the other ex ante, learning that a product is controversial
rather than bad is more valuable for types who prefer (1, 0) over (0, 1). Similarly, learning
that the product is good rather than controversial is less valuable for those types. Even
in this case, the interpretation of ∆B

O ≥ 0 as an objective effect is justified because of the
general agreement on its sign. We can now state our first result.

Proposition 1 For a given recommendation system R, a receiver of type i

(i) either accepts all recommendations or never accepts recommendations;

(ii) accepts all recommendations if and only if ∆B
O ≥ i∆B

S .

The first part of the result states that Definition 2 indeed captures all relevant forms of
behavior. That is, no type of receiver will ignore the informational content of recom-
mendations by always or never buying the recommended product. Intuitively, a receiver
accepts all recommendations if he thinks that they have sufficient objective content and/or
that his preferences are sufficiently aligned with the sender’s. Conversely, a receiver never
accepts recommendations if he thinks that they do not have sufficient objective content
and/or that his preferences are not sufficiently aligned with the sender’s. Whether the
recommendation is positive or negative does not matter for this assessment. Rather, as
laid out in the decomposition in Section 4.1, the objective effect ∆B

O of a buy recom-
mendation is positive, as the latter makes a good product more likely relative to the

13If ∆r
S = 0, there is no such shift in probabilities.

14The value of learning that the recommended product is more likely to be good is prH − qH , and the
value of the change in the probability that it is controversial is pr

1+pr
2−(q1+q2)

2 .
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controversial products and rules out a bad one. By contrast, the sign of the subjective
effect ∆B

S can be positive or negative. The second part of the result shows which types
accept all recommendations, which happens unless the subjective effect is sufficiently large
and the receiver’s preferences are not sufficiently well aligned with those of the rest of the
population. We emphasize that receivers who never accept recommendations still make
use of them, by doing the opposite of what they are told.

Proposition 1 tells us that we can decompose the population into at most two different
groups: those who accept all and those who never accept recommendations. Denoting the
type who is indifferent between always accepting and never accepting recommendations
as

ĩ :=
∆B

O

∆B
S

if ∆B
S ̸= 0,

we can summarize optimal receiver behavior as follows.

Corollary 1

(i) If |∆B
S | ≤ 2∆B

O, then all i ∈ [−1/2, 1/2] accept all recommendations.

(ii) If ∆B
S < −2∆B

O, then all i ≥ ĩ accept all recommendations.

(iii) If ∆B
S > 2∆B

O, then all i ≤ ĩ accept all recommendations.

The intuition for Corollary 1, the proof of which is omitted, is straightforward. Without
loss, consider a buy recommendation. For ∆B

S = 0, the recommendation does not shift
probability between the controversial product versions. Accordingly, accepting the recom-
mendation is optimal for all players because of its positive objective effect ∆B

O ≥ 0. For
∆B

S ̸= 0, the conclusion is the same as long as |∆B
S | remains small enough—as required

by (i). In that case, even the receivers who are most adversely affected by the subjective
content of the recommendation (those at i = 1/2 or i = −1/2) are convinced by its rel-
atively objective character. As |∆B

S | increases, the role of the probability shift becomes
apparent. As types i > 0 prefer (1,0) over (0,1), a shift of the probability from the latter
to the former induced by a recommendation (∆B

S < 0) increases such receivers’ expected
payoff, reinforcing the objective effect. By contrast, such a shift reduces the expected
payoff of types i < 0. The condition in (ii) always holds for i > 0, as the objective and
subjective effects reinforce each other. It also holds for i < 0 as long as |i| < |̃i| so that
the adverse subjective effect does not dominate the objective effect. Similarly, when the
recommendation shifts the probability from (1,0) to (0,1) (when ∆B

S > 0), all types i < 0
accept. By contrast, types i > 0 experience a reduction in their value, which can outweigh
the positive objective effect. The condition in (iii) makes sure that the latter case does
not arise.15

Corollary 1 may potentially be useful to draw inferences about the relative importance
of the objective and subjective effects of recommendations: If an observer sees a large
share of receivers accepting recommendations, this can be interpreted as evidence for a
relatively high objective effect of the recommendation.

Finally, we analyze receiver behavior for extreme recommendation thresholds.
15The effect on the expected payoffs in cases (ii) and (iii) is similar to the effect of a demand rotation

as discussed in Johnson and Myatt (2006): For the types who accept the recommendation, the expected
payoffs increase; for those who do not, they fall.
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Proposition 2 Suppose R → 1 or R → 0. Then, all types accept all recommendations
irrespective of the product distribution.

In the limits, both types of recommendations essentially contain only objective infor-
mation. For instance, when R → 1, buy recommendations require that the product is
objectively good, while don’t-buy recommendations require that it is not. Either way,
the recommendation does not reveal anything about the relative probabilities of the two
controversial product versions. Instead, it provides objective information that is equally
valuable for all types, irrespective of their preferences for controversial products. Thus,
all types accept all recommendations.

5 The Value of the Recommendation System
We now deal with the value of recommendation systems. In Section 5.1, we provide
a characterization result. Section 5.2 asks how to use the recommendation threshold
to influence the value. Finally, we investigate the effects of the preference and quality
distributions on the value in Section 5.3.

5.1 Characterizing the Value of the Recommendation System

Before defining the value of a recommendation system, we describe the expected payoffs of
a fixed type i receiver, depending on whether he has access to a recommendation system
and whether he accepts its recommendations. Without a recommendation system, all
products are identical ex ante, with an expected payoff based on the prior distribution of
product qualities. Hence, the expected payoff of a receiver i is

V 0(i) := U0(i). (5)

Now suppose one of the products comes with a buy or don’t-buy recommendation, so the
receiver has to update his belief about the quality distribution. A receiver who accepts
all recommendations chooses this product (rather than one of the alternatives) only if it
comes with a buy recommendation. With a recommendation system, the expected payoff
of a receiver i who accepts all recommendations is thus

V A(i) := πBUB(i) + (1− πB)U0(i). (6)

The first term is the probability of receiving a buy recommendation multiplied by the
expected payoff from accepting it (and thus buying the recommended product). The
second term is the probability of a don’t-buy recommendation multiplied by the expected
payoff from buying the product without any recommendation, that is, based on priors.16

A receiver who never accepts recommendations will buy the recommended product
if it comes with a don’t-buy recommendation. Otherwise, he will buy one of the other
products. Hence, the expected payoff of such a receiver is

V N(i) :=πBU0(i) + (1− πB)UD(i). (7)

16The notation V A(i) emphasizes the dependence of this expected payoff on the type of the receiver.
Clearly, VA also depends on R and on the decision environment; similarly for the expressions below.
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A buy recommendation does not create value for receivers who do not accept it, as such
types choose the alternative for which no recommendation is available. Instead, the
don’t-buy recommendation, which is given with probability (1 − πB), does influence the
behavior of the types who do not accept it: Instead of buying an alternative based on
prior probabilities, updating leads them to choose the product for which they received
the explicit recommendation not to buy.

We now define the value of a recommendation system.17

Definition 4 V (R), the value of a recommendation system R, is the expected in-
crease in payoffs resulting from the existence of recommendations, where the expectation
is taken over all pairs of independently drawn senders and receivers.

Using Definition 4, we can characterize V (R) as follows:
vertical space
(i)

∫ 1/2

−1/2
(V A(i)− V0(i))dF (i) if |∆B

S | ≤ 2∆B
O;

(ii)
∫ ĩ

−1/2
V N(i)dF (i) +

∫ 1/2

ĩ
V A(i)dF (i)−

∫ 1/2

−1/2
V 0(i)dF (i) if ∆B

S < −2∆B
O;

(iii)
∫ ĩ

−1/2
V A(i)dF (i) +

∫ 1/2

ĩ
V N(i)dF (i)−

∫ 1/2

−1/2
V 0(i)dF (i) if ∆B

S > 2∆B
O.

vertical space
The simple structure of V (R) for |∆B

S | ≤ 2∆B
O in (i) results because, by Corollary 1, all

types accept a recommendation. The difference between the expressions for ∆B
S < −2∆B

O

in (ii) and ∆B
S > 2∆B

O in (iii) arises because only types i > ĩ accept the recommendation
in the former case, whereas only types i < ĩ do so in the latter.

We now express the value V (R) in terms of its objective and subjective content.

Proposition 3 The value V (R) of the recommendation system R is:
vertical space
(i) πB[∆B

O −∆B
SE[i]] if |∆B

S | ≤ 2∆B
O;

(ii) (1− πB)F (̃i)
[
∆D

O −∆D
S E[i | i ≤ ĩ]

]
+ πB(1− F (̃i))

[
∆B

O −∆B
SE[i | i ≥ ĩ]

]
if ∆B

S < −2∆B
O;

(iii) πBF (̃i)
[
∆B

O −∆B
SE[i | i ≤ ĩ]

]
+ (1− πB)(1− F (̃i))

[
∆D

O −∆D
S E[i | i ≥ ĩ]

]
if ∆B

S > 2∆B
O.

Intuitively, when |∆B
S | ≤ 2∆B

O, Corollary 1 implies that all receivers accept all recommen-
dations as the objective effect dominates. Hence, by equation (6), the recommendation
system creates value only in case of a buy recommendation, as a don’t-buy recommenda-
tion leads to the same expected payoff as without a recommendation system. The positive
payoff effect of the recommendation reflects the type-independent objective part ∆B

O and
the subjective part ∆B

S , which is weighted by the average type. Finally, all of that only
materializes with the probability of a buy recommendation, πB.

As the absolute value of ∆B
S increases, the analysis becomes more complex because

some types never accept recommendations. We consider the case ∆B
S > 2∆B

O and repro-
duce the expression for V (R) as follows:18

πBF (̃i)
[
∆B

O −∆B
SE[i | i ≤ ĩ]

]︸ ︷︷ ︸
types accept all recommendations

+(1− πB)(1− F (̃i))
[
∆D

O −∆D
S E[i | i ≥ ĩ]

]︸ ︷︷ ︸
types never accept recommendations

. (8)

In this case, the buy recommendation shifts probability from (1, 0) to (0, 1), which is
unfavorable for receivers i > 0, reducing their gains from accepting and possibly making

17This definition is in line with the definition of a valuable signal in Kamenica and Gentzkow (2011).
18The argument for ∆B

S < −2∆B
O is analogous.
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them negative. Thus, for ∆B
S > 2∆B

O, only types below ĩ (a fraction F (̃i) of the receivers)
accept all recommendations, which comes with probability πB. In addition to the objective
value of the recommendation (∆B

O), these receivers obtain a subjective value. In (8), the
subjective value is reflected in −∆B

SE[i | i ≤ ĩ], the average effect of the shift in the relative
probabilities of (1, 0) and (0, 1) on the value of accepting the recommendation for these
buyers. The sign of this term depends on the properties of F captured in E[i | i ≤ ĩ]. It is
positive if the negative contribution of types i < 0 dominates the positive contribution of
types i > 0. The second component in (8), corresponding to the types who never accept
recommendations, is arguably more surprising. Given their lack of alignment with the rest
of the population, these types treat the recommendation not to buy as good news about
the product and thus do not accept the recommendation.19 Nonetheless, its informational
content creates value for them.

Going forward, we shall often invoke the following symmetry assumption on the pref-
erence distribution.

Assumption 1 F (−i) = 1− F (i) for all i ∈ [−1/2, 1/2].

We now define the quantity

β := F (1/2−R).

Due to Assumption 1, it has a simple interpretation: Given a threshold R, the parameter
β captures the fraction of the population that is willing to recommend product versions
(1, 0) or, equivalently (given the symmetry of the distribution), (0, 1). For a fixed type
distribution F , the variables β and R are inversely related. We then obtain the following
result:

Proposition 4 Suppose Assumption 1 holds. Then, all types accept all recommendations
and

V (β) = πB∆B
O.

To understand why all types accept all recommendations, the belief-updating decomposi-
tion in Section 4.1 is helpful. Its third component captures the potential shift of probabil-
ities between controversial products, which induces a purely type-dependent payoff effect.
Given the symmetry assumption, both controversial product versions lead to a buy rec-
ommendation with probability β. Hence, a recommendation does not shift probabilities
between the controversial products. As the other two effects of a buy recommendation
on payoffs are positive for all types, the buy recommendation increases expected payoffs
for any type, yielding the result.20 Proposition 3 thus implies V (R) = πB

[
∆B

O −∆B
SE[i]

]
.

Further, because of the symmetry of the population, E[i] = 0, so V (R) = πB∆B
O as

required.
19In detail, a don’t-buy recommendation (which happens with probability 1 − πB) carries an adverse

objective content (summarized by ∆D
O in the term in squared brackets). However, for receivers with i > 0

it also carries the good news that the product is more likely to be of the preferred version (1, 0) rather
than (0, 1). Those with i > ĩ(> 0) then buy the product despite the adverse objective content, valuing
the beneficial subjective effect with −∆D

S E[i | i ≥ ĩ] > 0 on average. Such receivers exist only if ∆B
S is

sufficiently large (and hence ∆D
S is sufficiently negative relative to ∆D

O ).
20An analogous argument applies for don’t-buy recommendations.
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5.2 Optimal Design of Recommendation Systems

We now use our characterization of the value of a recommendation system to address
design issues, focusing on the optimal choice of the threshold. We start with the case of
a symmetric population, then we treat asymmetric populations.

5.2.1 Symmetric Type Distribution

In the symmetric setting, we obtain a simple expression for V (R), yielding transparent
comparative statics results.21 To this end, a reparametrization is helpful:

Definition 5 The prevalence of controversial products is given as Q := q1+q2
2

. The odds
of a good product are σ := qH/qL.

Using these parameters, we immediately obtain:

Lemma 1 Suppose Assumption 1 holds. Then,

πB =
(1− 2Q)σ

1 + σ
+ 2Qβ;

∆B
O =

βQ(σ + 1)− 2Qσ + σ

2βQ(σ + 1)− 2Qσ + σ
− (1− 2Q)σ

1 + σ
−Q;

V (β) = πB∆B
O = (1− 2Q)

σ +Q (β − σ + σ2(1− β))

(σ + 1)2
.

The value of the recommendation system depends on β as well as on the prevalence of
controversial products Q and on the odds ratio σ between good and bad products. Recall
that, for each of the two controversial product versions, β measures the fraction of the
population willing to recommend it. Therefore, the parameter captures the influence of
the distribution and the recommendation threshold on the value.22 We can interpret
changes of β as either changes of the threshold R for a given distribution F or as changes
of the distribution F for a given threshold R. The following result abstracts from this
distinction, allowing for either interpretation. It shows that countervailing effects of β
on the probability of a buy recommendation and the objective value ∆B

O of accepting it
result in a non-trivial effect on V (β) = πB∆B

O.

Lemma 2 Suppose Assumption 1 holds. Then,

(i) πB is strictly increasing and ∆B
O strictly decreasing in β;

(ii) ∂2V
∂β∂σ

< 0 and V ′(β) =


> 0 if σ < 1;

= 0 if σ = 1;

< 0 if σ > 1.

The first statement in (i) holds because as β increases a greater share of the population
is willing to recommend a controversial product. Moreover, conditional on receiving a
buy recommendation, the recommended product is thus more likely to be controversial.

21As we focus on R as the design parameter, we often write V (R) instead of V (R).
22Observe that by varying R we can obtain any β ∈ (0, 1).
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Therefore, the objective payoff component ∆B
O decreases as β increases, implying the

second statement in (i). The effect of β on V (β) in (ii) reflects the effect on its two
components. As σ increases (good products become relatively more likely than bad ones),
a buy recommendation becomes more likely. Hence, a high ∆B

O is particularly valuable
when σ is high so that increasing σ and lowering β are complementary ( ∂2V

∂β∂σ
< 0).23

The value-maximizing level of β must thus be weakly decreasing in σ. The symmetry
assumption turns out to render the problem linear in β, so the second result in (ii)
follows. Using β = F (1/2−R), Lemma 2 directly implies the following result.24

Proposition 5 Suppose Assumption 1 holds. Then, V (R) is

(i) decreasing in R if σ < 1;

(ii) increasing in R if σ > 1;

(iii) constant in R if σ = 1.

By Lemma 2, an increase in R reduces the probability of a buy recommendation, while it
increases ∆B

O, the expected average payoff conditional on a buy recommendation. These
effects exactly offset each other if and only if σ = 1. Otherwise, one effect dominates the
other. Based purely on uncontroversial products, a buy recommendation would be more
likely than a don’t-buy recommendation when the good product is relatively more likely
than the bad one (σ > 1). It is thus worthwhile to increase the expected average payoff
conditional on a buy recommendation by increasing R at the expense of the probability of
receiving such a recommendation. Put differently, the designer chooses between revealing
whether the product is good or whether it is bad. He moves the threshold in the direction
which yields full revelation with higher probability, which hinges only on the odds ratio
of the uncontroversial product versions.

5.2.2 Asymmetric Type Distribution

For a symmetric population, the subjective component cancels out in the value of the rec-
ommendation system, allowing for a focus on the role of the objective content. Moreover,
symmetry simplifies the analysis by ensuring that all types accept the recommendation.
However, the assumption of a symmetric population may prove restrictive in some con-
texts, and it does not allow us to study the role of the subjective component for the
optimal design of the recommendation system. To make headway in that direction, we
introduce the following assumption.

Assumption 2 (i) F (i) = (i+ 1/2)a for a > 0; (ii) q1 = q2 = Q.

We thus capture asymmetry by means of a simple but flexible parameterization. By
assuming that the controversial products are equally likely a priori, we ensure that any
effect of a recommendation exclusively reflects the population asymmetry. Corollary 1
implies the following result:

23More technically, repeated application of the product rule shows that ∂2V
∂β∂σ = ∂πB

∂β
∂∆B

O

∂σ + ∂πB

∂σ
∂∆B

O

∂β +

∂2πB

∂β∂σ∆
B
O +

∂2∆B
O

∂β∂σ π
B . The (incomplete) intuition just given corresponds to the first term being positive.

24Result (iii) follows because V (β) is independent of β in this case.
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Corollary 2 Suppose Assumption 2 holds. Then, we have:

(i) ∆B
S = 0 if a = 1; (ii) ∆B

S < 0 if a > 1; (iii) ∆B
S > 0 if a < 1.

Thus, whether and how a recommendation shifts the probabilities of the controversial
product versions depends entirely on the type distribution. When it is symmetric (a = 1),
there is no shift. When it is convex (a > 1), so that more people prefer version (1, 0) to
(0, 1), a buy recommendation shifts probability from (0, 1) to (1, 0), as it is more likely to
come from a person who prefers (1, 0) to (0, 1). Similarly, when the type distribution is
concave (a < 1), the probability is shifted to (0, 1).

We can now analyze the extent to which the result in Proposition 5 that, generically,
extreme thresholds are desirable is an artifact of the symmetry assumption. This is
challenging because, contrary to the symmetric case, the set of types that accept all
recommendations depends on the threshold R. Reflecting this complication, there is
no direct counterpart to Proposition 5. Nevertheless, the following two results provide
some insights into the optimal recommendation system in the case of an asymmetrically
distributed population.

Proposition 6 Suppose Assumption 2 holds. An optimal threshold R∗ ∈ (0, 1) exists if
Q > 1−max{ a

a+1
, 1
a+1

} or if (i) or (ii) holds:

(i) a < 1 and
1−Q(a+ 1)

a−Q(a+ 1)
≥ σ ≥ a−Q(a+ 1)

1−Q(a+ 1)
;

(ii) a > 1 and
1−Q(a+ 1)

a−Q(a+ 1)
≤ σ ≤ a−Q(a+ 1)

1−Q(a+ 1)
.

Figure 2. Illustration of Propositions 6 and 7

0.11 1 3 5 7 9

1

3
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9

R ∗
∈
(0
, 1
)

R∗ ∈ (0, 1)

R∗ → 1

R∗ → 0
a

σ

a−Q(a+1)
1−Q(a+1)
1−Q(a+1)
a−Q(a+1)

Notes: An interior solution arises between the respective top and bottom curve segments
(Proposition 6). For a ≤ 1/9 ≈ 0.11 and a ≥ 9, an interior solution arises for all values of σ. Below the
respective top and bottom curve segments, extreme thresholds are optimal if Q is sufficiently small
(Proposition 7); for example, Q = 0.1, as depicted.

As illustrated in Figure 2, Proposition 6 provides sufficient conditions for interior solutions.
It shows that an interior optimum exists when (i) controversial products are likely (Q is
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large) and the population is very asymmetric (a is far away from 1) or otherwise when
(ii) the uncontroversial product versions are similarly likely (σ is close to 1).25 The result
starkly contrasts the symmetric case, where an interior solution is only possible in the
knife-edge case σ = 1. In that case, recommendations do not reveal any information about
the relative likelihood of the controversial products beyond the prior, so the subjective
payoff effect cancels out and the optimal threshold depends only on the odds ratio σ of the
uncontroversial products. In contrast, the average subjective payoff effect does not cancel
out in the asymmetric case. Thus, the choice of the optimal threshold no longer only
depends on σ but also on the asymmetry parameter a and the prevalence of controversial
products Q. We explore under which circumstances the conditions given in Proposition 6
are necessary as well as sufficient:

Proposition 7 Suppose Assumption 2 holds and fix σ. Then, as Q → 0, V (R) is

(i) decreasing in R if σ ≤ min
{

1−Q(a+1)
a−Q(a+1)

, a−Q(a+1)
1−Q(a+1)

}
;

(ii) increasing in R if σ ≥ max
{

1−Q(a+1)
a−Q(a+1)

, a−Q(a+1)
1−Q(a+1)

}
;

(iii) maximized for some R∗ ∈ (0, 1) otherwise.

The proof essentially proceeds in two steps. First, all types accept all recommendations
when Q is sufficiently small, since then the subjective content in the recommendation
vanishes.26 This simplifies V (R) by eliminating the case distinctions. Leveraging this, we
can prove the quasiconcavity of the function, ensuring that the sufficient conditions in
Proposition 6 are necessary, too.

The requirement that Q → 0 is much stronger than necessary for this result. Even for
higher values of Q, Figure 2 quite accurately separates the parameter range under which
an interior solution exists from the area where it does not.27 In a nutshell, the result shows
that an interior solution exists if (i) controversial products are sufficiently prevalent, (ii)
the population asymmetry is substantial, and (iii) the odds ratio of the uncontroversial
products is sufficiently close to 1. To understand this intuitively and to contrast it with
the symmetric case, suppose that σ > 1. Hence, the value of the recommendation system
is increasing in R in the symmetric case, as the gain in the expected payoff conditional on
receiving a buy recommendation outweighs the loss from the lower probability of a buy
recommendation. This follows because the subjective effect in V (R) = πB[∆B

O −∆B
SE[i]]

cancels out with symmetry. With an asymmetric population, the term −∆B
SE[i] does

not vanish. To illustrate this, consider a very asymmetric preference distribution such as
F (x) = (x + 1/2)10, for which the probability of a type i ≤ 0 is less than 0.1%. Then,
E[i] > 0 and, by Corollary 2, ∆B

S < 0 so that −∆B
SE[i] > 0. Hence, the subjective effect is

positive on average. Intuitively, though this population is distributed very asymmetrically
25The figure might suggest that the parameter region where R∗ → 1 is in some sense larger than

the area where R∗ → 0. This is an artefact of the otherwise quite convenient parameterization of the
preference distribution but does not have any significant economic meaning.

26Q → 0 implies that |∆B
S | ≤ 2∆B

O, ensuring that all types accept all recommendations by Corollary 1.
The key step is that ∆B

S → 0 as Q → 0, while ∆B
O → 1−qH > 0 when Q → 0. The proof shows that, even

for larger values of Q, |∆B
S | ≤ 2∆B

O often holds, explaining why the conclusion of Proposition 7 holds not
only in the limit.

27The figure is drawn for Q = 0.1, in which case the if-and-only-if statement is correct for σ ∈ [1/60, 60]
and a ∈ [1/10000, 10000].
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around zero, it is essentially homogeneous in the sense that almost all types agree on the
ranking of the controversial products: If such a product results in a buy recommendation,
it almost surely has quality vector (1,0), as almost all types prefer this to (0, 1). As
such, these products are not that controversial anymore, and even the subjective effect is
“fairly objective.” Now, as R increases, the probability of a buy recommendation still falls,
and the “purely objective” payoff part ∆B

O increases. However, for R high enough, this
“fairly objective” payoff part −∆B

SE[i] also decreases, as an extreme threshold R impedes
the ability to distinguish between a good product and a widely preferred controversial
product. While consumers are homogeneous regarding which controversial product version
they prefer, they are still heterogeneous with respect to the intensity with which they do
so. Hence, disentangling the good and the preferred controversial product is worthwhile.
Therefore, an interior optimal threshold results.

5.3 Preference Heterogeneity and Controversial Products

As discussed after Proposition 7, preference heterogeneity only matters when controversial
products exist. Moreover, the less homogeneous the population, the more likely it is
that extreme thresholds are desirable so that receivers learn solely about uncontroversial
products. Hence, one might conjecture that greater preference heterogeneity and a higher
prevalence of controversial products reduce the value of recommendation systems. In the
following, we address both issues in turn, demonstrating that these conjectures do not
hold without qualification. For tractability, we focus on symmetric populations.

5.3.1 Preference Heterogeneity

In this section, we analyze how changes in the (exogenously given) preference distribution
affect the value of the recommendation system.28 Under Assumption 1, we can analyze
increases in the polarization of the distribution of preferences by keeping the threshold R
fixed and varying β.29 This corresponds to a mean-preserving spread of F (see Figure 3),
coinciding with an increase in β for R > 1/2 and a decrease for R < 1/2. We obtain the
following result.

Proposition 8 Suppose Assumption 1 holds.

1. Suppose σ < 1. Then, a mean-preserving spread of the type distribution increases
the value of the recommendation system for R > 1/2 and decreases it for R < 1/2.

2. Suppose σ > 1. Then, a mean-preserving spread of the type distribution decreases
the value of the recommendation system for R > 1/2 and increases it for R < 1/2.

To gain some intuition, suppose σ < 1 and R > 1/2. Figure 1 shows that with R > 1/2,
only extreme types give buy recommendations for controversial products.30 Increasing

28When we consider distinct sender and receiver distributions in Section 6.1, we will build further on
this and take a design perspective instead of the comparative statics approach here.

29For R = 1/2, we must have β = 1/2 because the symmetry of F requires F (0) = 1/2, so this
exercise is only meaningful for thresholds R ̸= 1/2. Further, for R > 1/2 we must have β ≤ 1/2 because
β = F (1/2−R) ≤ F (0) = 1/2. Accordingly, for R < 1/2 we must have β ≥ 1/2.

30Conversely, for R < 1/2 only relatively extreme types give don’t-buy recommendations for contro-
versial products. This can be seen by flipping the colors in Figure 1 so that it corresponds to R = 1/4.
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Figure 3. Population polarization
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Notes: We have fixed R = 3/4. The dotted and dashed lines both correspond to symmetric type
distributions F , where β = 1/2 for the dotted line and β = 0 for the dashed line. A move from β = 0 to
β = 1/2 corresponds to a mean-preserving spread of the distribution of types.

β corresponds to a mean-preserving spread of F given R. Consequently, there are more
such extreme senders and, hence, buy recommendations are increasingly likely to result
from controversial products. This increases the probability of buy recommendations while
lowering their objective value. The resolution of this trade-off, and thus whether the value
of the recommendation system goes up or down, is determined by the odds ratio σ (see
Proposition 5). For instance, if σ < 1, good products are rare compared to bad ones,
so the value of the recommendation system is increasing in β. Therefore, the positive
effect of revealing bad products by means of don’t-buy recommendations outweighs the
negative effect of a reduced value conditional on receiving a buy recommendation. Thus,
given a high recommendation threshold (R > 1/2), a more polarized population benefits
more from the recommendation system, as this means only bad products generate don’t-
buy recommendations. Conversely, when the recommendation threshold is relatively low
(R < 1/2), a less polarized population centered around the middle gives don’t-buy rec-
ommendations only to bad products.

5.3.2 Prevalence of Controversial Products

Without controversial products, preference heterogeneity would not matter: All receivers
would accept all recommendations, as they would reveal whether the product is good or
bad. Hence, the value of the recommendation system would be independent of the prefer-
ence distribution. More broadly, we now ask how an increasing prevalence of controversial
products (an increase in Q) affects the value of a recommendation system. A natural con-
jecture is that recommendations become less valuable when controversial products are
more likely. We find that this conjecture needs to be qualified.

Corollary 3 Suppose Assumption 1 holds.

(i) If 3σ−β−σ2+σ2β > 0, then the value of the recommendation system is decreasing
in Q. In particular, this is the case when σ = 1.

(ii) If 3σ − β − σ2 + σ2β < 0, then Q∗ := 3σ−β−σ2+σ2β
4σ−4β−4σ2+4σ2β

∈ (0, 1
2
) maximizes V (R).

Figure 4 illustrates the result. In the white area in Panel A, V (β) is decreasing in β; in
the shaded area, an interior maximizer exists. When good and bad products are similarly
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Figure 4. Illustration of Corollary 3
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Notes: In Panel A, the shaded area indicates the parameter space for which an interior solution for Q
arises by Corollary 3. In Panel B, the shaded area indicates where πB is increasing in Q. In Panel C,
the shaded area indicates where ∆B

O is increasing in Q, illustrated for Q = 0.1.

likely (σ is close to 1), a higher prevalence of controversial products indeed reduces V (β).
For very high or low values of σ, however, this need not be true. This surprising result
reflects the multiplicative structure of V (β). Under Assumption 1, V (β) is the product
of the buying probability πB and the objective value of the recommendation per buyer,
∆B

O. The effect of Q on πB is negative only if σ is sufficiently large (see Panel B).
Intuitively, as Q increases, good products are less likely, reducing the probability of buy
recommendations. However, there are now more buy recommendations stemming from
controversial products, as these have become more likely. β and σ determine which of
these effects dominates. When β is high, the greater likelihood that controversial products
receive buy recommendations increases the total probability of buy recommendations,
strengthening the positive effect. When σ is high, the lower share of good products
dominates, strengthening the negative effect. Similarly, one can show that the effect of Q
on ∆B

O becomes negative only for small σ (see Panel C). Again, this reflects countervailing
forces. The negative effect results from the increased probability that a product with a
buy recommendation is controversial. The positive effect reflects a change in the value of
the outside option. The values of σ and β determine which effect dominates.31

6 Extensions
Our benchmark model relies on several assumptions. First, the preference distribution of
senders and receivers is identical. Second, there are only two levels of recommendations
(“buy” and “don’t-buy”). Third, each receiver only has access to a single recommendation.
We now relax each of these assumptions in turn.

31When β is small, the negative effect is weak, as only few types give buy recommendations for contro-
versial products. When σ is small, the outside option becomes more valuable, as bad products become
less likely, weakening the positive effect.
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6.1 Distinct Sender and Receiver Distributions

We modify the benchmark model by assuming that the sender and the receiver are drawn
from different distributions F and G, respectively. For instance, this enables us to take
into account that the “early adopters” of a new product may have different preferences
than the general population (similar to Acemoglu et al. (2022)). We show that the results
of the benchmark case easily generalize to this setting. More importantly, the general
setting allows us to treat the choice of the sender distribution as a potentially interesting
design variable.

The sender distribution F fully determines the probabilities of buy and don’t-buy
recommendations, the posterior probabilities, and thus the objective and subjective effects
and the expected payoffs, VA and VN . Hence, all results on receiver behavior in Section 4
apply verbatim if F is taken to be the sender distribution, as the receiver’s behavior
is independent of the receiver distribution. The value of the recommendation system,
however, depends on the receiver distribution G as well, as it involves integration over
this distribution. The next result generalizes Proposition 3.32

Proposition 9 Consider the model with distinct preference distributions of senders and
receivers. Suppose the sender distribution F satisfies Assumption 1. Then, all types accept
all recommendations. Further, V (R) = πB

F [∆
B
O,F −∆B

S,FEG[i]] is

(i) decreasing in R if σ < Q−(q1−q2)EG[i]
Q−(q2−q1)EG[i]

;

(ii) increasing in R if σ > Q−(q1−q2)EG[i]
Q−(q2−q1)EG[i]

;

(iii) constant in R if σ = Q−(q1−q2)EG[i]
Q−(q2−q1)EG[i]

.

Recall that in the benchmark model symmetry of F implies that all receivers accept all
recommendations and the subjective effect of the recommendation cancels out. This is still
true if F is distinct from G as long as G is also symmetric and hence EG[i] = 0. For more
general distributions G, all receivers still accept all recommendations for the same reason
as above. However, as the receiver distribution is not symmetric, the subjective effect
does not cancel out anymore. Even so, the result qualitatively mirrors Proposition 5, as
changing the threshold still leads to the same trade-off: Reducing the threshold increases
the probability of a buy recommendation but decreases its value conditional on that
recommendation. However, in the latter effect, the value is no longer purely objective but
consists of the objective part ∆B

O and a subjective part given by −∆B
SEG[i], reflecting the

receiver distribution G. Further, as the subjective effect now influences the value of the
system, so does the prevalence of controversial products by affecting the tipping point at
which the designer opts for a high or a low threshold. In any case, when EG[i] = 0, we
obtain the result from the baseline model as a special case. Similarly, the other results
in the benchmark model remain (qualitatively) valid. With asymmetrically distributed
populations, Propositions 6 and 7 hold for arbitrary receiver distributions as long as we
impose Assumption 2 on the sender distribution.

Allowing for differences in sender and receiver distributions makes it possible to address
another important design issue. In some cases, it is natural to assume that a designer,
for instance a platform, can influence the sender distribution or at least the receiver’s

32The notation for the quantities in Proposition 9 reflects their dependence on F and G, respectively.
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perception of it. Assuming that the platform has better knowledge about sender types,
it may choose to share some of this information with the receivers or even restrict the
option of sending recommendations to certain types of senders (and inform the receivers
accordingly). For instance, many platforms such as Amazon inform browsing customers
that “customers who bought this item also bought” another item.

There are different ways to model this. First, suppose that F is symmetric and that
the designer can render the sender distribution more or less precise using mean-preserving
contractions or mean-preserving spreads, respectively. Intuitively, one would expect more
precise knowledge about the sender to increase the value of the recommendation system.
However, the logic of Proposition 9 shows that this is not necessarily the case. As in
Section 5.3.1, the effects of mean-preserving contractions and spreads can be captured as
changes in β = F (1/2 − R), just like changes in R. With mild adaptions, the proof of
Proposition 9 can thus be used to show that whether more or less precise information
about the sender increases the value of recommendations depends on the parameters.

Second, suppose that the sender and receiver distributions are fixed but that the
designer can provide the receivers with a signal about the sender that allows for inference
about the sender’s type. To make the point as starkly as possible, suppose the signal
fully reveals the sender’s type. If the sender is revealed to be type i = 0, all types
accept all recommendations, as both types of recommendations contain only objective
information. In contrast to Proposition 2—where this behavior is shown to ensue with
extreme thresholds—this would arise for all thresholds R ∈ (0, 1). Intuitively, as the type
i = 0 is indifferent between controversial products, her recommendation never reveals
subjective information. In contrast, if the signal reveals a sender of type i ̸= 0, the
receiver will be able to learn about controversial products, too.33 Thus, having a sender
who is partial to some controversial product is not necessarily a bad thing.

Finally, suppose that the sender and receiver distributions are not independent but
somehow correlated. Recommendations would then be “tailored” to the receiver ī, as they
would be drawn from a sender distribution F (i|̄i), resulting in type-specific posteriors prj(i)
for j ∈ {H, 1, 2, L}. In such a setting, an analogous result to Proposition 1 still holds,
establishing that either all all or no recommendations are accepted. Further analysis
would give rise to similar complications as in Section 5.2.2 with asymmetric distributions,
as the the correlation between sender and receiver distribution would affect the set of
types who accept all recommendations.

6.2 Multiple Recommendation Thresholds

We now analyze the effects of reducing the coarseness of the recommendation system.
We maintain all assumptions of the benchmark case, except that there are two threshold
levels R1, R2 ∈ (0, 1) with R2 ≥ R1 and three types of recommendations r ∈ {D,N,B}
which we interpret as “don’t-buy,” “neither buy nor don’t-buy,” and “buy.”34 The sender
gives a buy recommendation if the payoff is at least R2, a don’t-buy recommendation if
it is below R1, and neither if it is in [R1, R2). We maintain Assumption 1.

The proof of Proposition 10 in Appendix A.3 provides the receiver’s posteriors. For
33For instance, if i = 1 and R ∈ (0, 1), a buy recommendation reveals that the product is either of

version (1, 1) or (1, 0)
34Such a two-threshold structure is found to be optimal in models of strategic communication in the

context of social learning by Smirnov and Starkov (2024) and Bénabou and Vellodi (2024).
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buy and don’t-buy recommendations, these posteriors are analogous to the benchmark,
except that the different thresholds in each case have to be taken into account. As in
the benchmark model, the highest and lowest recommendations rule out the bad and
good product versions, respectively. The intermediate recommendation r = N , however,
rules out both of these versions, so the receiver knows that the recommended product is
controversial.

We say that a receiver accepts all recommendations if he buys if r = B and does not
buy if r = D, allowing for either behavior if r = N . Assumption 1 again implies that the
receiver always buys a product with r = B and never buys if r = D. As noted above,
r = N rules out both uncontroversial products. Given the symmetric population, r = N
leaves the relative likelihood of the controversial products unchanged. Hence, whether a
type i wants to buy a product with r = N depends on (i) how likely a good product is and
(ii) how much he (dis-)likes the more likely controversial product. As in the benchmark
model, we can derive the indifferent type so that, depending on parameters, either all, only
sufficiently aligned, or no types buy the product with an intermediate recommendation.

V (R) now consists of two components. First, as in the benchmark, all types accept
r = B, resulting in the component πB∆B

O.35 Moreover, r = N can create value for the
types that buy following that neutral recommendation. As noted above, parameter values
determine which types do this. Despite this ambiguity, we can formulate the following
result.

Proposition 10 Consider the model with multiple recommendation thresholds. Suppose
Assumption 1 holds. V (R) is (i) decreasing in R1 if σ < 1 and (ii) increasing in R2 if
σ > 1.

The result provides an incomplete characterization of the optimal recommendation sys-
tem: It establishes that one of the two thresholds should be extreme so that one recom-
mendation essentially becomes objective. Thus, as in Proposition 5, the designer maxi-
mizes the probability of an objective recommendation, considering which uncontroversial
product version is more likely a priori. The optimal value of the threshold that is not
pinned down by Proposition 10 depends on the model parameters unless q1 = q2. In this
degenerate case, any value for the other threshold is optimal, but it is also possible that
both the high and the low recommendations are essentially turned objective.36

6.3 Multiple Recommendations

We now show that the value of a recommendation system does not always increase if
receivers obtain more than one recommendation: The additional recommendations do
not add value if the ex ante probabilities of the good and bad products are similar while
those of the two controversial product versions are not.

We assume that receivers have access to a number b of buy recommendations and a
number d of don’t-buy recommendations. As in the benchmark model, recommendations
come from randomly drawn senders. We add the assumption that they are drawn inde-
pendently.37 Just as before, a single buy recommendation is enough to rule out a bad
product, and a single don’t-buy recommendation is enough to rule out a good product.

35As before, accepting don’t-buy recommendations does not create value.
36This arises for instance for F (i) = 1/2 + i with parameters q1 = 0.7, q2 = 0.1, and qH = 0.03.
37In Appendix A.4, we provide the posteriors, depending on b and d.

25



Consequently, when the receiver obtains mixed recommendations, that is, both buy and
don’t-buy recommendations, he rules out both uncontroversial product versions.38

To make our main point that multiple recommendations need not increase the value
of the recommendation system as starkly as possible, we focus on the case of “infinite
learning” where the receiver has access to an unlimited number of recommendations.

Proposition 11 Consider the model with multiple recommendations. Suppose Assump-
tion 1 holds. Let λ := q1/q2. Compared with the optimal recommendation system in
the benchmark model, infinite learning does not increase the value of the recommendation
system if and only if either (i), (ii), or (iii) holds:

(i) λ = 1; (ii) λ > 1 and σ /∈
[
1

λ
, λ

]
; (iii) λ < 1 and σ /∈

[
λ,

1

λ

]
.

To grasp the result intuitively, recall the receiver’s behavior in the single-recommendation
system. With a threshold of R → 0, the receiver buys the recommended product unless
it is bad. For R → 1, he does so only if it is good. In the benchmark model, V(R) is
decreasing in R if σ < 1 and increasing if σ > 1. Lemma 4 in Appendix A.4 describes
optimal receiver behavior with infinite learning. It shows that behavior coincides with the
optimally designed single-recommendation system if the product is uncontroversial: Good
products are bought but bad ones are not. Thus, the infinite-learning system potentially
differs from the benchmark only for controversial products, which generate mixed recom-
mendations. When σ is very low, bad products are relatively likely, so the outside option
looks relatively bleak. A consumer facing a product with mixed recommendations will
thus buy this (controversial) product. In contrast, when σ is very high, any such consumer
will buy the outside option, as it is likely to be good. Thus, when the probabilities of the
uncontroversial product versions are not too similar, the behavior with a single recom-
mendation and with multiple recommendations coincides, and multiple recommendations
do not increase the value of the recommendation system. However, multiple recommenda-
tions do affect behavior if the probabilities of the good and bad products are similar. For
instance, when λ > 1, low types who value the less likely controversial product version
(0, 1) more strongly than product version (1, 0) will opt for the outside option rather than
the controversial product. Then, the system’s value with multiple recommendations is
higher than that of the single-recommendation system, as it provides more granular in-
formation. Inspecting the conditions on σ in (ii) and (iii), we find that the more extreme
(further away from 1) the odds ratio of the controversial products is, the more extreme
the odds ratio of the uncontroversial product versions needs to be for there to be no value
in additional recommendations.

7 Conclusion
We have set out to study the role of preference heterogeneity in recommendations, ask-
ing questions such as: Under what circumstances do people accept a recommendation?
What determines the value of a recommendation system and when is it maximized? Our

38In Sun (2011), a higher variance in the recommendations corresponds to a niche product that some
consumers like and some don’t. Similarly, in our paper, mixed recommendations (and thus a higher
variance) result from controversial products that, indeed, some consumers like more than others.
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analysis highlights the importance of disentangling objective information from subjective
preferences. We have seen that, depending on the preference distribution, the subjective
content can reinforce the positive news of a buy recommendation or reverse it so that a
buy recommendation is treated as a bad signal. Conversely, the subjective content can
turn a don’t-buy recommendation into good news for some people. The design of a rec-
ommendation system, as summarized in the threshold R, should thus take into account
how it influences the relative objectivity of recommendations.

We find that extreme recommendation systems may be valuable, as they convey ob-
jective information even when preferences are heterogeneous. However, when preferences
are not distributed symmetrically and controversial products are sufficiently prevalent,
with enough consensus on their ranking, the optimal recommendation threshold is set at
an intermediate level. This allows receivers to not only draw inferences about the uncon-
troversial products but also about the controversial ones. For asymmetrically distributed
populations, subjective content in the recommendation is thus valuable when controversial
products are common and not too controversial.

Throughout the paper, we have analyzed the value of the recommendation system
from a consumer perspective. Arguably, online recommendation systems employed on an
e-commerce platform are more likely to be geared towards the interests of the platform.
Depending on the details of the fee system that it employs, the platform could, for in-
stance, be interested in maximizing the probability of purchases. It is possible to look at
such questions in the context of our model, too. A naïve conjecture would be that it is
then optimal to set as low a recommendation threshold as possible so that all products
except the bad one yield buy recommendations. However, recall that it is not necessarily
the case that all receivers accept recommendations. The analysis of this problem is then
non-trivial.39

Finally, we have maintained a number of classical assumptions such as risk neutrality,
linear probability weights, and Bayesian updating. Preliminary results suggest that a
promising avenue for future research is to relax these assumptions so as to study their
impact on the receiver’s tendency to accept a recommendation or not and, thus, on the
value of the recommendation system.

39In the case of a symmetric population, in which all recommendations are accepted, the problem
is simpler, and a sales-maximizing recommendation system indeed sets as low a threshold as possible.
Moreover, our results show that this may even be optimal for consumers. This latter part stands in
contrast to, for instance, the welfare-reducing inflated ratings in Peitz and Sobolev (forthcoming).
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A Formal Details and Proofs

A.1 Proofs and Technical Details for the Benchmark Model

The Effects of Recommendations on Beliefs

To understand how beliefs are updated after a recommendation, it is useful to decompose
the difference between beliefs with and without a recommendation into several compo-
nents. We illustrate this for buy recommendations. Let p(r) = (prH , p

r
1, p

r
2, p

r
L) denote the

vector of posterior probabilities following a recommendation r ∈ {B,D}. The total effect
of the buy recommendation B on the probability vectors is the sum of three parts,

p(B)− q = (p(B)− q′′) + (q′′ − q′) + (q′ − q), (9)

where the three components of the right-hand side will be explained in Steps 1 to 3 below.

Step 1 The first effect of a buy recommendation is that the probability of an objectively
bad product falls to zero. We isolate this effect by assuming that the odds ratios
between the remaining events remain unchanged so that the effect corresponds to a
change from the prior probability q to q′ := ( qH

1−qL
, q1
1−qL

, q2
1−qL

, 0). This effect of the
buy recommendation states that all three quality profiles other than (0, 0) become
more likely at the expense of quality profile (0, 0).

Step 2 Next, the buy recommendation means that the objectively good product becomes
more likely relative to the controversial products. We isolate this effect by assuming
that (i) the probability of (1, 1) increases to pH and (ii) the odds ratios between the
remaining events remain unchanged so that the effect corresponds to a change from
q′ := ( qH

1−qL
, q1
1−qL

, q2
1−qL

, 0) to q′′ := (pH , k
q1

1−qL
, k q2

1−qL
, 0), where k = (1−pH)(1−qL)

q1+q2
to

guarantee that q′′ is a probability vector. Clearly, pH > qH
1−qL

.

Step 3 Finally, the buy recommendation may change the odds between the controversial
product versions. We isolate this effect as a change in the probability vector from
q′′ := (pH , k

q1
1−qL

, k q2
1−qL

, 0) to p(B).

Proof of Proposition 1

Part (i): Accepting the don’t-buy recommendation is optimal if and only if U(0)−U(D) ≥
0 or, equivalently,

qH + q1(1/2 + i) + q2(1/2− i) ≥ pD1 (1/2 + i) + pD2 (1/2− i). (10)

Similarly, accepting the buy recommendation is optimal if and only if U(B) − U(0) ≥ 0
or, equivalently,

pBH + pB1 (1/2 + i) + pB2 (1/2− i) ≥ qH + q1(1/2 + i) + q2(1/2− i). (11)

We shall show that conditions (10) and (11) are equivalent, thus proving the claim that
receivers either accept all recommendations or never accept recommendations. To do so,
we prove the following two steps.

Step 1: (10) is equivalent with

1− pB1 − pD2 ≥ (1/2 + i)[pB2 − pD2 + pD1 − pB1 ]. (12)
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Step 2: (11) is equivalent with (12).
The proofs of both steps will rely on the identities

qs = πBpBs + πDpDs = (1− πD)pBs + πDpDs for s ∈ {H, 1, 2} (13)

and

pBH = 1− pB1 − pB2 , (14)

Proof of Step 1: Replacing qH , q1 and q2 in (10) using (13), we obtain

(
1− πD

)
pBH +

((
1− πD

)
pB1 + πDpD1

)(1

2
+ i

)
+
((
1− πD

)
pB2 + πDpD2

)(1

2
− i

)
≥ pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

)
.

This simplifies to

pBH + pB1

(
1

2
+ i

)
+ pB2

(
1

2
− i

)
≥

(
pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

))
.

Using (14) and then rearranging further gives

1− pB1 − pB2 + pB1

(
1

2
+ i

)
+ pB2

(
1

2
− i

)
≥ pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

)
⇔

1− pB1 − pD2 − pB2 + pB1

(
1

2
+ i

)
+ pB2

(
1

2
− i

)
≥ pD1

(
1

2
+ i

)
− pD2

(
1

2
+ i

)
⇔

1− pB1 − pD2 + pB1

(
1

2
+ i

)
+ pB2

(
−1

2
− i

)
≥

(
pD1 − pD2

)(1

2
+ i

)
⇔

1− pB1 − pD2 ≥ (1/2 + i)[pB2 − pD2 + pD1 − pB1 ].

Proof of Step 2: Replacing qH and q1 and q2 in (11) using (13) gives

pBH + pB1

(
1

2
+ i

)
+ pB2

(
1

2
− i

)
≥

(
1− πD

)
pBH +

((
1− πD

)
pB1 + πDpD1

)(1

2
+ i

)
+
((
1− πD

)
pB2 + πDpD2

)(1

2
− i

)
.

Rearranging this expression gives

pBH + pB1

(
1

2
+ i

)
+ pB2

(
1

2
− k

)
− pD1

(
1

2
+ i

)
− pD2

(
1

2
− i

)
≥ 0

Adding −pB1 − pD2 + pD2 + pB1 on the left-hand side gives:

pBH − pB1 − pD2 + pD2 + pB1 + pB1

(
1

2
+ i

)
+ pB2

(
1

2
− i

)
− pD1

(
1

2
+ i

)
− pD2

(
1

2
− i

)
≥ 0

and thus

pBH − pB1 − pD2 ≥ −pD2 − pB1 − pB1

(
1

2
+ i

)
− pB2

(
1

2
− i

)
+ pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

)
.

29



Using (14) gives

1− pB1 − pB2 − pB1 − pD2

≥ −pD2 − pB1 − pB1

(
1

2
+ i

)
− pB2

(
1

2
− i

)
+ pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

)
or equivalently

1− pB1 − pB2 ≥ −pB1

(
1

2
+ i

)
− pB2

(
1

2
− i

)
+ pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

)
Adding −pD2 + pB2 on both sides gives:

1− pB1 − pD2 − pB2 + pB2

≥ −pB1

(
1

2
+ i

)
− pB2

(
1

2
− i

)
+ pD1

(
1

2
+ i

)
+ pD2

(
1

2
− i

)
− pD2 + pB2 ,

which is equivalent with (12).
Part (ii): This follows directly from plugging in ∆r

O and ∆r
S into equation (1) for the

buy recommendation the analogous equation for a don’t-buy recommendation.

Proof of Proposition 2

Recall from equation (1) the optimal acceptance condition

(pBH − qH) +
pB1 − q1

2
+

pB2 − q2
2

≥ i[(pB2 − q2)− (pB1 − q1)].

First, observe that

lim
R→1

pB1 = lim
R→1

pB2 = 0

and thus limR→1 p
B
H = 1. Hence, in the case R → 1 the optimality condition simplifies to

1− qH − q1 + q2
2

≥ i(q1 − q2). (15)

Equation (15) always holds for i ≥ 0. Further, for q1 > q2 the condition is most stringent
for i = 1/2. In this case, it is equivalent to 1 ≥ q1 + qH , which always holds. The case
i < 0 is analogous. In the case R → 0 we get

lim
R→0

ps(B) =
qs

1− qL

for s ∈ {H, 1, 2} and thus the optimality condition simplifies to

qHqL
1− qL

+
q1qL

2(1− qL)
+

q2qL
2(1− qL)

≥ i[
q2qL
1− qL

− q1qL
1− qL

]

⇔ 2qH + q1 + q2 ≥ 2i[q2 − q1].

For i ≥ 0, the last condition always holds if q1 ≥ q2. Further, for q2 > q1 the condition is
most stringent for i = 1/2. In this case, it is equivalent to qH + q1 ≥ 0, which is always
satisfied. The case i < 0 is analogous.
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Proof of Proposition 3

(i) If |∆B
S | ≤ 2∆B

O, inserting (5) and (6) yields

V (R) =

∫ 1/2

−1/2
(V A(i)− V0(i))dF (i)

= πB

∫ 1/2

−1/2

(
pBH + (1/2 + i)pB1 + (1/2− i)pB2

)
− (qH + (1/2 + i)q1 + (1/2− i)q2)dF (i)

= πB

∫ 1/2

−1/2
(pBH − qH) +

pB1 − q1
2

+
pB2 − q2

2︸ ︷︷ ︸
=∆B

O

dF (i)

− πB

∫ 1/2

−1/2
i([(pB2 − q2)− (pB1 − q1)]︸ ︷︷ ︸

=∆B
S

)dF (i)

= πB[∆B
O −∆B

SE[i]]

(ii) If ∆B
S < −2∆B

O, inserting (5), (6) and (7) yields

V (R) =

∫ ĩ

−1/2
V N (i)dF (i) +

∫ 1/2

ĩ
V A(i)dF (i)−

∫ 1/2

−1/2
V 0(i)dF (i)

=

∫ ĩ

−1/2
πB

(
qH + q1(

1

2
+ i) + q2(

1

2
− i)

)
+ (1− πB)

(
pDH + pD1 (

1

2
+ i) + pD2 (

1

2
− i)

)
dF (i)

+

∫ 1/2

ĩ
πB

(
pBH + pB1 (

1

2
+ i) + pB2 (

1

2
− i)

)
+ (1− πB)

(
qH + q1(

1

2
+ i) + q2(

1

2
− i)

)
dF (i)

−
∫ ĩ

−1/2
qH + q1(

1

2
+ i) + q2(

1

2
− i)dF (i)−

∫ 1/2

ĩ
qH + q1(

1

2
+ i) + q2(

1

2
− i)dF (i)

= (1− πB)

∫ ĩ

−1/2
(pDH − qH) +

pD1 − q1
2

+
pD2 − q2

2︸ ︷︷ ︸
=∆D

O

−i([(pD2 − q2)− (pD1 − q1)]︸ ︷︷ ︸
=∆D

S

)dF (i)

+ πB

∫ 1/2

ĩ
(pBH − qH) +

pB1 − q1
2

+
pB2 − q2

2︸ ︷︷ ︸
=∆B

O

−i([(pB2 − q2)− (pB1 − q1)]︸ ︷︷ ︸
=∆B

S

)dF (i)

= (1− πB)F (̃i)
[
∆D

O −∆D
S E[i | i ≤ ĩ]

]
+ πB(1− F (̃i))

[
∆B

O −∆B
SE[i | i ≥ ĩ]

]
.

(iii) If ∆B
S > 2∆B

O, then V (R) =
∫ ĩ

−1/2
V A(i)dF (i) +

∫ 1/2

ĩ
V N(i)dF (i) −

∫ 1/2

−1/2
V 0(i)dF (i).

Inserting (5), (6) and (7) and proceeding analogously as in case (ii) gives the expression.

Proof of Proposition 4

According to Corollary 1, all types accept the recommendation if

min{∆B
O +

∆B
S

2
,∆B

O − ∆B
S

2
} ≥ 0. (16)
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To see that this condition is fulfilled, first observe that

∆B
O +

∆B
S

2
= pBH − qH + pB2 − q2

=
qH

qH + β(q1 + q2)
− qH +

βq2
qH + β(q1 + q2)

− q2

=
qH + βq2 − (qH + q2)(qH + β(q1 + q2))

qH + β(q1 + q2)

=
β(q2 − (qH + q2)(q1 + q2)) + qH(1− qH − q2)

qH + β(q1 + q2)

This term is positive if q2 − (qH + q2)(q1 + q2) ≥ 0. If q2 − (qH + q2)(q1 + q2) < 0, then

β(q2 − (qH + q2)(q1 + q2)) + qH(1− qH − q2)

qH + β(q1 + q2)

≥ (q2 − (qH + q2)(q1 + q2)) + qH(1− qH − q2)

qH + β(q1 + q2)
=

(qH + q2)(1− q1 − q2 − qH)

qH + β(q1 + q2)
≥ 0.

Thus, ∆B
O +

∆B
S

2
≥ 0 even in this case. Proceeding analogously, one obtains ∆B

O − ∆B
S

2
=

pBH −qH +pB1 −q1 ≥ 0. Corollary 1 thus implies that all types accept the recommendation.
Assumption 1 implies E[i] = 0, so that the result follows from Proposition 3.

Proof of Lemma 1

The result on πB follows from inserting qH = (1− 2Q)σ/(1 + σ), ϕ1(R) = ϕ2(R) = β and
q1 + q2 = 2Q into πB = qH + q1ϕ1(R) + q2ϕ2(R). Next, equation (2) gives

∆B
O =

βQ(σ + 1)− 2Qσ + σ

2βQ(σ + 1)− 2Qσ + σ
− (1− 2Q)σ

1 + σ
−Q (17)

The result on V (β) then follows immediately from Proposition 4.

Proof of Lemma 2

(i) Note that πB = (1− 2Q)σ/(1 + σ) + 2Qβ, so that πB is strictly increasing. Moreover,

∂∆B
O

∂β
= − (Q(1− 2Q)σ(1 + σ))

(σ − 2Qσ + 2βQ(1 + σ))2
< 0.

(ii) Lemma 1 implies

V ′(β) =
Q(1− 2Q)(1− σ)

1 + σ
,

and hence

∂2V

∂β∂σ
= −2Q(1− 2Q)

(1 + σ)2
< 0,

V ′(β) is negative for σ > 1, positive for σ < 1 and zero for σ = 1.
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Proof of Corollary 2

Using (3), applying the qH notation for ease of exposition and imposing Assumption 2
and q1 = q2 we obtain

∆B
S = − Q(1−Ra − (1−R)a)

qH +Q(1−Ra + (1−R)a)
. (18)

For a = 1, this term simplifies to ∆B
S = 0. Hence, it suffices to show that ∆B

S is strictly
increasing in a. To this end, note that the derivative of ∆B

S with respect to a is given by

∂∆B
S

∂a
=

Q [log(R)Ra (2Q(1−R)a + qH) + log(1−R)(1−R)a (2Q (1−Ra) + qH)]

(Q (1−Ra + (1−R)a) + qH)
2

Since R ∈ (0, 1) this expression is negative. Further, given the assumptions, the indiffer-
ent type can be expressed as (for a ̸= 1)

ĩ =
2Q2 (1−Ra + (1−R)a)− 2(1− qH)qH

2Q (1−Ra − (1−R)a)

− Q (1−Ra + (1−R)a − 2qH (2−Ra + (1−R)a))

2Q (1−Ra − (1−R)a)

where

∂ĩ

∂Q
=

Q2 (1−Ra + (1−R)a) + (1− qH)qH
Q2 (1−Ra − (1−R)a)

so that ĩ is increasing in Q when a > 1 and decreasing in Q when a < 1.

Proof of Proposition 6

We provide the proof for a < 1.40 In this case, Proposition 3 implies

V (R) =


πB

[
∆B

O −∆B
SE[i]

]
if ĩ > 1/2

πBF (̃i)
[
∆B

O −∆B
SE[i | i ≤ ĩ]

]
if ĩ ≤ 1/2

+(1− πB)(1− F (̃i))
[
∆D

O −∆D
S E[i | i ≥ ĩ]

]
Proposition 2 implies ĩ > 1/2 if R → 0 or R → 1. Thus, it suffices to consider

V (R) =(qH +Q(1−Ra + (1−R)a))

(
2qH +Q(1−Ra + (1−R)a)

2(qH +Q(1−Ra + (1−R)a))
− qH −Q

)
+ (qH +Q(1−Ra + (1−R)a))

Q(1−Ra − (1−R)a)

qH +Q(1−Ra + (1−R)a)

a− 1

2(a+ 1)

=

(
2qH +Q(1−Ra + (1−R)a)

2
− (qH +Q(1−Ra + (1−R)a))(qH +Q)

)
+Q(1−Ra − (1−R)a)

a− 1

2(a+ 1)

40The proof for a > 1 is analogous.
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for R sufficiently close to 0 and 1. Using qH = (1−2Q)σ
1+σ

and rearranging gives

V (R) =
(1− 2Q)σ

1 + σ
+

aQ(1−Ra) +Q(1−R)a

a+ 1

−
(
(1− 2Q)σ

1 + σ
+Q(1−Ra) +Q(1−R)a

)(
(1− 2Q)σ

1 + σ
+Q

)
We then obtain the corresponding derivative

V ′(R) =
aQ

(
(a+ 1) (Ra−1 + (1−R)a−1) (Q+ (1−2Q)σ

1+σ
)− aRa−1 − (1−R)a−1

)
a+ 1

We can then write

V ′(R) > 0

⇔ (a+ 1)
(
Ra−1 + (1−R)a−1

)
(Q+

(1− 2Q)σ

1 + σ
)− aRa−1 − (1−R)a−1 > 0

⇔ (a+ 1)

(
Q+

(1− 2Q)σ

1 + σ

)
>

aRa−1 + (1−R)a−1

Ra−1 + (1−R)a−1
=

a(1−R)1−a +R1−a

(1−R)1−a +R1−a
,

so that

lim
R→0

V ′(R) > 0 ⇔ (a+ 1)

(
Q+

(1− 2Q)σ

1 + σ

)
> a

and analogously

lim
R→1

V ′(R) < 0 ⇔ (a+ 1)

(
Q+

(1− 2Q)σ

1 + σ

)
< 1.

Thus, a sufficient condition for an interior solution when a < 1 is given by

1

a+ 1
>

(
Q+

(1− 2Q)σ

1 + σ

)
>

a

a+ 1
. (19)

Rearranging the first inequality, we obtain(
1

a+ 1
−Q

)
(1 + σ) > (1− 2Q)σ

⇔ 1

a+ 1
−Q > (1− 2Q)σ −

(
1

a+ 1
−Q

)
σ

⇔ 1

a+ 1
−Q > σ

(
a

1 + a
−Q

)
For a < 1, the condition Q ≥ 1 − max{ a

a+1
, 1
a+1

} is equivalent to Q ≥ a
1+a

so that the
right-hand side is negative while the left-hand side is positive. Hence, this inequality is
always satisfied. Proceeding analogously for the second inequality, we obtain(

a

a+ 1
−Q

)
(1 + σ) < (1− 2Q)σ,
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which is also implied by Q ≥ 1−max{ a
a+1

, 1
a+1

}. Hence, the first statement of Proposition
6 for the case a < 1 follows. For the second statement when Q < 1−max{ a

a+1
, 1
a+1

}, we
can rewrite the two inequalities in (19) as

1−Q(a+ 1)

a−Q(a+ 1)
> σ >

a−Q(a+ 1)

1−Q(a+ 1)

giving the second condition in the statement.

Proof of Proposition 7

Using (17) and (18), we obtain

lim
Q→0

∆B
S = lim

Q→0
− Q(1−Ra − (1−R)a)

qH +Q(1−Ra + (1−R)a)
= 0,

and

lim
Q→0

∆B
O = lim

Q→0

2qH +Q(1−Ra + (1−R)a)

2(qH +Q(1−Ra + (1−R)a))
− qH −Q = 1− qH > 0.

Therefore, 2∆B
O ≥ |∆B

S | so that all types accept a recommendation according to Corollary
1. Thus, Proposition 3 implies

V (R) = πB[∆B
O −∆B

SE[i]]

Rearranging this equation gives

V (R) =
(1− 2Q)σ

1 + σ
+

aQ(1−Ra) +Q(1−R)a

a+ 1

−
(
(1− 2Q)σ

1 + σ
+Q(1−Ra) +Q(1−R)a

)(
(1− 2Q)σ

1 + σ
+Q

)
=

(1− 2Q)σ

1 + σ

(
1−

(
(1− 2Q)σ

1 + σ
+Q

))
+

Q

a+ 1
(a(1−Ra) + (1−R)a)

− Q

a+ 1
((1−Ra) + (1−R)a) (a+ 1)

(
(1− 2Q)σ

1 + σ
+Q

)
=

(1− 2Q)σ(Q(σ − 1) + 1)

(σ + 1)2

+
Q

a+ 1
(1−Ra)

(
a− (a+ 1)

(
(1− 2Q)σ

1 + σ
+Q

))
+

Q

a+ 1
(1−R)a

(
1− (a+ 1)

(
(1− 2Q)σ

1 + σ
+Q

))
= c0 +

Q

a+ 1
[c1(a)(1−Ra) + c2(a)(1−R)a]
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with c0 =
(1−2Q)σ(Q(σ−1)+1)

(σ+1)2
, c1(a) = a+ (a+ 1)Q(σ−1)−σ

σ+1
and c2(a) = 1 + (1 + a)Q(σ−1)−σ

σ+1
.

We thus obtain

V ′(R) = − Qa

a+ 1

[
Ra−1c1(a) + (1−R)a−1c2(a)

]
,

V ′′(R) = −Qa(a− 1)

a+ 1

[
Ra−2c1(a)− (1−R)a−2c2(a)

]
,

For c1(a), c2(a) ≥ 0 and c1(a), c2(a) ≤ 0 the function V (R) is monotonically decreasing
and increasing, respectively. Further, for a ≥ 1, c1(a) > 0 and c2(a) < 0 it is concave.
Conversely, for a < 1 and c1(a) < 0 and c2(a) > 0 it is concave. Further,

c1(a)− c2(a)


< 0 a < 1

= 0 a = 1

> 0 a > 1,

Therefore, for a < 1 either (i) c1(a), c2(a) ≤ 0, (ii) c1(a) ≤ 0 ≤ c2(a), or (iii) 0 ≤
c1(a), c2(a). Hence, in all three cases V (R) is quasiconcave. Similarly, for a > 1 either (i)
c1(a), c2(a) ≤ 0, (ii) c2(a) ≤ 0 ≤ c1(a), or (iii) 0 ≤ c1(a), c2(a). Hence, in all three cases
V (R) is quasiconcave. Finally, for a = 1 quasiconcavity follows because c1(a) = c2(a) and
thus V is monotone. Putting all of this together, it follows that V is quasiconcave in R.
Hence, the sufficient conditions in Proposition 6 for an interior solution are also necessary.

Proof of Proposition 8

As argued in the text, a mean-preserving spread corresponds to an increase in β for
R > 1/2, while for R < 1/2 it corresponds to a decrease in β. From the proof of Lemma
2, we can see that the value of the recommendation system is increasing in β for σ < 1
and decreasing in β for σ > 1. Thus, the statement follows.

Proof of Corollary 3

We first take the derivative of V with respect to Q to obtain

∂V

∂Q
=

1

(σ + 1)2
(
β − 3σ + 4Qσ − 4Qβ + σ2 − 4Qσ2 − σ2β + 4Qσ2β

)
Setting this equal to zero and solving for the candidate solution we obtain

Q∗ =
3σ − β − σ2 + σ2β

4σ − 4β − 4σ2 + 4σ2β

Next, the SOC reads

4σ − 4β − 4σ2 + 4σ2β < 0,

where the l.h.s. of the SOC is the denominator of Q∗. Thus, a necessary condition for a
positive interior solution is

3σ − β − σ2 + σ2β < 0.
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This proves (i). To prove (ii), note that 3σ−β−σ2+σ2β < 0 implies 4σ−4β−4σ2+4σ2β <
0. Hence, the candidate solution is positive. It remains to show that Q∗ < 1

2
. Recall that,

by the requirements that the SOC holds and Q∗ > 0, we can focus on the case that both
the numerator and the denominator in Q∗ are negative. Accordingly, the requirement
that 3σ−β−σ2+σ2β

4σ−4β−4σ2+4σ2β
< 1/2 becomes

2σ − 2β − 2σ2 + 2σ2β < 3σ − β − σ2 + σ2β.

Equivalently,

(σ + 1) (σ(1− β) + β) > 0

which always holds for β ≤ 1.

A.2 Distinct Sender and Receiver Distributions

Proof of Proposition 9
The value of the recommendation system can be written as

V (R) =


∫ 1/2
−1/2(VA,F (i)− V0,F (i))dG(i) if |∆B

S,F | ≤ 2∆B
0,F∫ ĩ

−1/2 VN,F (i)dG(i) +
∫ 1/2

ĩ
VA,F (i)dG(i)−

∫ 1/2
−1/2 V0,F (i)dG(i) if ∆B

S,F < −2∆B
0,F∫ ĩ

−1/2 VA,F (i)dG(i) +
∫ 1/2

ĩ
VN,F (i)dG(i)−

∫ 1/2
−1/2 V0,F (i)dG(i) if ∆B

S,F > 2∆B
O,F

and the result from Proposition 3 translates accordingly so that we can rewrite V (R) as

πB [∆B
O,F −∆B

S,FEG[i]] if |∆B
S,F | ≤ 2∆B

O,F

(1− πB)G(̃i)
[
∆D

O −∆D
S,FEG[i | i ≤ ĩ]

]
+ πB(1−G(̃i))

[
∆B

O,F −∆B
S,FEG[i | i ≥ ĩ]

]
if ∆B

S,F < −2∆B
O,F

πBG(̃i)
[
∆B

O,F −∆B
S,FEG[i | i ≤ ĩ]

]
+ (1− πB)(1−G(̃i))

[
∆D

O −∆D
S,FEG[i | i ≥ ĩ]

]
if ∆B

S,F > 2∆B
O,F .

Since F satisfies Assumption 1, all receivers will accept the recommendation so that we
are in the case |∆B

S,F | ≤ 2∆B
O,F . Thus, we have

V (β) = πB[∆B
O,F −∆B

S,FEG[i]]

= qH + βQ− (qH + 2βQ)(qH +Q) + (q2 − q1)(qH − β(1− 2Q))EG[i]

and therefore

V ′(β) = Q− 2Q(qH +Q) + (q2 − q1)(1− 2Q)EG[i]

Replacing qH = ((1 − 2Q)σ)/(σ + 1) and rearranging the inequalities V ′(β) > 0 and
V ′(β) < 0 yields the statement in the proposition.

A.3 Multiple Recommendation Levels

Proof of Proposition 10
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The posteriors are given as follows. Following a buy recommendation,

pBH(R) =
qH

qH + q1(1− F (R2 − 1/2)) + q2F (1/2−R2)
,

pB1 (R) =
q1(1− F (R2 − 1/2))

qH + q1(1− F (R2 − 1/2)) + q2F (1/2−R2)
,

pB2 (R) =
q2F (1/2−R2)

qH + q1(1− F (R2 − 1/2)) + q2F (1/2−R2)

pBL (R) = 0.

A don’t-buy recommendation results in a posterior of

pDH(R) = 0,

pD1 (R) =
q1F (R1 − 1/2)

q1F (R1 − 1/2) + q2(1− F (1/2−R1)) + qL
,

pD2 (R) =
q2(1− F (1/2−R1))

q1F (R1 − 1/2) + q2(1− F (1/2−R1)) + qL

pDL (R) =
qL

q1F (R1 − 1/2) + q2(1− F (1/2−R1)) + qL
.

Finally, the recommendation neither to buy nor not to buy yields

pNH(R) = 0 pN2 (R) =
q2Γ2

q1Γ1 + q2Γ2

pN1 (R) =
q1Γ1

q1Γ1 + q2Γ2

pNL (R) = 0.

where Γ1 ≡ F (R2 − 1/2) − F (R1 − 1/2) and Γ2 ≡ F (1/2 − R1) − F (1/2 − R2). For
the symmetric case of Assumption 1, setting F (1/2 − R2) = 1 − F (R2 − 1/2) = β2 and
F (1/2−R1) = 1− F (R1 − 1/2) = β1, this reduces to

pBH =
qH

qH + 2Qβ2

, pNH = 0, pDH = 0,

pB1 =
q1β2

qH + 2Qβ2

, pN1 =
q1

q1 + q2
, pD1 =

q1(1− β1)

1− qH − 2Qβ1

,

pB2 =
q2β2

qH + 2Qβ2

, pN2 =
q2

q1 + q2
, pD2 =

q2(1− β1)

1− qH − 2Qβ1

,

pBL = 0, pNL = 0, pDL =
qL

1− qH − 2Qβ1

.

Next, we determine the indifferent type following an intermediate recommendation. Type
i will buy the product with the intermediate recommendation whenever

q1
q1 + q2

(1/2 + i) +
q2

q1 + q2
(1/2− i) ≥ qH + q1(1/2 + i) + q2(1/2− i)

⇔i

(
(q1 − q2)(qH + qL)

q1 + q2

)
≥ 1

2
(qH − qL)

If q1 = q2, all types buy if qL ≥ qH and none buy otherwise. If q1 > q2, all types

i ≥ 1

2

(qH − qL)(q1 + q2)

(q1 − q2)(qH + qL)
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buy the product if r = N .41 Taken together, we can define

ĩM :=


1/2 q1 = q2, qL < qH

−1/2 q1 = q2, qL ≥ qH
1
2
(qH−qL)(q1+q2)
(q1−q2)(qH+qL)

q1 ̸= q2.

The value of the recommendation system therefore reads

V (β2, β1) =(qH + 2Qβ2)

(
qH +Qβ2

qH + 2Qβ2

− (qH +Q)

)
+ 2Q(β1 − β2)

∫ 1/2

ĩM

1/2(qL − qH) + i
(1− 2Q)(q1 − q2)

2Q
dF (i),

where the first part corresponds to the value of accepting the highest recommendation and
the second part comes from buying following an intermediate recommendation. Depending
on parameters, ĩM changes so that some, all or no types buy following an intermediate
recommendation. Taking the respective derivatives we obtain

∂V

∂β2

= Q(qL − qH)F (̃iM)− (1− 2Q)(q1 − q2)(1− F (̃iM))E[i | i ≥ ĩM ]

∂V

∂β1

= Q(qL − qH)(1− F (̃iM)) + (1− 2Q)(q1 − q2)(1− F (̃iM))E[i | i ≥ ĩM ]

Suppose σ > 1 so that qL < qH . Then, ∂V
∂β2

< 0. Next, consider σ < 1 so that qL > qH .
Then, ∂V

∂β1
> 0.

Finally, suppose q1 = q2. If qL < qH , then ĩM = 1/2, so that the derivatives read

∂V

∂β2

= Q(qL − qH) < 0

∂V

∂β1

= 0.

For qL > qH , we obtain ĩM = −1/2, so that the derivatives read

∂V

∂β2

= 0

∂V

∂β1

= Q(qL − qH) > 0.

Thus, for qL < qH any β1 and thus any R1 is optimal, whereas for qL > qH any β2 and
thus any R2 is optimal.

41The argument for q1 < q2 is analogous.
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A.4 Multiple Recommendations

After b buy recommendations and d don’t-buy recommendations, where b + d > 0, the
posterior reads

pH(b, d) =

{
qH

qH+q1(ϕ1(R))b+q2(ϕ2(R))b
if d = 0

0 if b = 0

p1(b, d) =
q1(ϕ1(R))b(1− ϕ1(R))d

q1(ϕ1(R))b(1− ϕ1(R))d + q2(ϕ2(R))b(1− ϕ2(R))d

p2(b, d) =
q2(ϕ2(R))b(1− ϕ2(R))d

q1(ϕ1(R))b(1− ϕ1(R))d + q2(ϕ2(R))b(1− ϕ2(R))d

pL(b, d) =

{
qL

q1(1−ϕ1(R))d+q2(1−ϕ2(R))d+qL
if b = 0

0 if d = 0

Lemma 3 Consider the model with multiple recommendations. Suppose Assumption 1
holds and consider any threshold R ∈ (0, 1).

(i) If the receiver obtains only buy (don’t buy) recommendations, then, as the number
of recommendations increases, her posterior belief converges to pH = 1 (pL = 1).

(ii) If the receiver obtains mixed recommendations, then p1(b, d)/p2(b, d) = q1/q2 and
pH(b, d) = pL(b, d) = 0 for any b, d > 0.

Proof. (i) Suppose the receiver gets only buy recommendations and that b → ∞. Then,
ϕ1(R) = ϕ2(R) ∈ (0, 1) if R ∈ (0, 1), so that limb→∞(ϕi(R))b = 0 for i = 1, 2. Hence,
limb→∞ pH(b, 0) = 1. The argument for don’t-buy recommendations is analogous.

(ii) For any b, d > 0, pH(b, d) = pL(b, d) = 0 obviously holds. Further, because
ϕ1(R) = ϕ2(R) by Assumption 1,

pi(b, d) =
qi

q1 + q2

for i = 1, 2, yielding statement (ii).

Optimal Receiver Behavior with Infinite Learning

Lemma 4 Consider the “infinite learning” recommendation system with interior threshold
R ∈ (0, 1). Then,

(i) any receiver type i ∈ [−1/2, 1/2] buys the product if it is good;

(ii) no receiver type i ∈ [−1/2, 1/2] buys the product if it is bad;

(iii) if the product is controversial,

(a) and λ > 1, all receiver types i ≥ ĩ∞ buy the product;

(b) and λ < 1, all receiver types i ≤ ĩ∞ buy the product.

(c) and λ = 1, all receiver types i ∈ [−1/2, 1/2] buy the product if σ ≤ 1 and none
buy it if σ > 1.
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Proof. First, Lemma 3 implies that infinite learning fully reveals the good and bad prod-
ucts, whereas the posteriors of the controversial product versions are pi(b, d) = qi/(q1+q2)
for b, d > 0 . Hence, the expected payoff of buying the recommended good with mixed
recommendations reads

q1
q1 + q2

(1/2 + i) +
q2

q1 + q2
(1/2− i) =

1

2
+ i

q1 − q2
q1 + q2

.

Therefore, receiver i buys the product with mixed recommendations if and only if

1

2
+ i

q1 − q2
q1 + q2

≥ V 0(i) = qH + q1(1/2 + i) + q2(1/2− i). (20)

The indifferent consumer satisfies

1

2
+ ĩ∞

q1 − q2
q1 + q2

= qH + q1(1/2 + ĩ∞) + q2(1/2− ĩ∞) and thus

ĩ∞ =
(q1 + q2)(q1 + q2 + 2qH − 1)

2(q1 − q2)(1− (q1 + q2))

Using q1 =
2Qλ
λ+1

, q2 = 2Q
λ+1

and qH = ((1− 2Q)σ)/(σ + 1) gives

ĩ∞ =
(σ − 1)

2(1 + σ)

λ+ 1

λ− 1

Inserting this into (20) gives the result for part (iii) when λ ̸= 1. For the case λ = 1, the
condition to accept the recommendation simplifies to

1

2
≥ qH +Q ⇔ 1 ≥ 2qH + (1− qH − qL) ⇔ qL ≥ qH ⇔ σ ≤ 1.

Finally, parts (i) and (ii) follow trivially.

Proof of Proposition 11

(i) If λ = 1 the value of the infinite learning recommendation system is given by

V∞ = qH(1− qH −Q) + 2Qmax

{
1

2
− qH −Q, 0

}
.

The first term corresponds to the value generated when the product is good, so
that the sender always buys it. The second term captures the value generated from
a controversial product if it is bought, where the purchasing decision depends on
the parameters. Hence, V∞ coincides with the value of the single-recommendation
system for the optimal β, depending on whether qL or qH is bigger.

(ii) If λ > 1, only i ≥ ĩ∞ buy the product by Lemma 4. Hence, no type buys a
controversial product in the infinite-learning recommendation system if ĩ∞ ≥ 1/2,
which is equivalent to σ ≥ λ. This inequality implies σ > 1. Hence, in that case
all receivers behave in the same way in both the optimal single-recommendation
system (Proposition 5) and the infinite-learning system, buying only objectively
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good products. Conversely, if ĩ∞ ≤ −1/2 all types buy a controversial product
with the infinite-learning recommendation system. This can be rewritten as σ ≤
1/λ, which implies σ < 1, so that all receivers buy all products except those that
are objectively bad and therefore behave in the same way in the optimal single-
recommendation system and the infinite-learning system.

(iii) The proof is analogous to case (ii) and thus omitted.
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