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Abstract

I study the joint effects of the reserve price and the bid cap in the all-pay auction.

I show that in equilibrium bidding, there are: (i) atoms at 0, the reserve price,

and the bid cap; and (ii) continuous bidding above the reserve. If the valuations

are high enough, the range for continuous bidding vanishes entirely. Further, I

characterize environments with multiple equilibria and derive settings with the

following features: with two players, the player with the lower valuation can have

a positive rent; with three players, active competition for a single prize is possible

with totally asymmetric valuations; in both cases, the value of the positive payoff

for the “winner” can vary across different equilibria.

1 Introduction

Competitive environments often feature contestants exerting costly efforts in pursuit of

winning one of a limited number of valuable prizes. In sports leagues, teams hire athletes,

coaches, and managers to compete for championship trophies and prize money; in political

campaigns, parties use funds to promote candidates in competition for representation

seats; in R&D, firms conduct costly research to compete for patents.

All-pay auctions commonly appear in models of such competitive environments,

especially when the effort costs are fully or almost non-recoverable. For instance, Hillman
∗e-mail: oleg.muratov@vwi.unibe.ch; This article includes work from Chapter 2 of my PhD thesis,

Muratov (2019). I am indebted to my thesis advisors, Ron Siegel, Kalyan Chatterjee, and Rohit Lamba
for their guidance and support. I am grateful to Igor Letina for the detailed discussion and feedback.
I am thankful to Jean-Michel Benkert, Mikhail Drugov, Sergei Izmalkov, and Shuo Liu for the helpful
comments, as well as to “Contests: Theory and Evidence 2020”, OLIGO 2021, and SAET 2021 partici-
pants for insightful discussions. I acknowledge and appreciate the financial support from Swiss National
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and Riley (1989), Baye et al. (1993), and Che and Gale (1998) use all-pay auctions to

model and analyze lobbying and campaign expenditures, while Moldovanu and Sela (2003)

and Che and Gale (2003) model patent and R&D races.

Reserve prices, as well as expenditure caps, are standard tools in economic design,

which often appear in real-life contest settings.1 For instance, the NBA features both a

salary cap for teams as well as a minimum team salary.2 Similarly, there are salary limits

and franchise fees in the NFL, resembling the bid cap and the reserve price, respectively.3

Some economic environments inherently feature one of the studied attributes (the reserve

price or the bid cap). For those settings, studying the introduction of the other attribute

can allow for a greater flexibility, crucial for the contest designer, or the regulator. For

instance, sunk costs are typical in R&D.4 An organizer of an R&D race might try to limit

the duplicating expenses by means of an expenditure cap. Another relevant environment

is the evaluation of agents’ performance by a lenient reviewer: Letina et al. (2020) show

that an all-pay auction with a bid cap is optimal in this setting. One reasonable robustness

check consists of the analysis of how the equilibrium and the effort profile in that setting

change with a fixed effort cost.

While the reserve and the cap in the all-pay auction setting have been studied sep-

arately (see Che and Gale (1998), Siegel (2014), Szech (2015)), their joint influence on

players’ behavior has not yet received enough attention. Their joint study is, however,

important. On the one hand, their combination allows the designer greater flexibility in

the pursuit of the objective.5 On the other hand, the reserve’s and the cap’s aggregate

effect is not guaranteed to be just the sum of the two. Moreover, and as will be shown

is the case, multiple equilibria might emerge limiting the robustness when the two tools

are combined.

In this paper, I study the complete information all-pay auction with a reserve price

and a bid cap in the presence of two and three players. I completely characterize the

equilibria in this environment. I establish the settings in which the same player can be
1Depending on the context, the reserve price can take a form of an entry fee, a fixed cost, or something

similar.
2See, for instance, www.cbssports.com/nba/news/nba-wants-2-5-billion-fee-for-possible-expansion-

teams-expects-offers-in-vegas-and-seattle-per-report/ and https://cbabreakdown.com/salary-cap-
overview.

3www.cnbc.com/2018/10/05/nfl-owners-teams-football.html.
4Sunk costs in R&D are studied by Manez et al. (2009).
5There are various goals that the principal might desire, from maximizing useful efforts/minimizing

wasteful expenditures to selective efficiency/leveling the playground.
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either a “winner” or a “looser” in different equilibria (see Corollary 1); settings where

a “winner” can have different payoffs across equilibria (see Proposition 4.iii); settings

where three players with totally asymmetric valuations can bid actively in equilibrium

(see Proposition 4.iv); and settings where the player with a non-top valuation is the

“winner” (as illustrated in examples for Propositions 4.iii and 4.iv).

My results, therefore, complement and contrast the previous findings in the litera-

ture. In the standard complete information all-pay auction with 1 prize and N players,

Baye et al. (1996) show that the only player, who can be the “winner” is the one who has

a strictly greater valuation for the prize than the others. Besides, more than two players

can actively bid only in non-generic cases. Moreover, for more general all-pay contests,

Siegel (2009) shows that under regularity conditions, there are pre-determined sets of

“winners” and “losers”, such that “winners” get their rents, same across equilibria, and

“losers” get zero.

Besides the immediate relevance for the contest theory, the results in this paper

also have implications for the literature on information design. In Muratov (2021), I

characterize a mapping between an all-pay auction with the reserve and the cap, and the

competing multi-sender information design game, as in Boleslavsky and Cotton (2018).

Hence, deriving equilibria in the setting of the current paper also allows for characterizing

equilibria in related information design games.

2 Model: Two Bidders Case

Consider an all-pay auction with one prize and two bidders, 1 and 2, whose valuations

for the prize are V1 and V2, respectively. They submit bids, b1 and b2, and always have

to pay them. The player, who bids and pays the most, wins the prize.

Suppose that in addition to standard assumptions, there is a reserve price, r, and a

bid cap, κ, such that 0 < r < κ. Normalize κ = 1. A player who bids below the reserve

price can never win the item, even if his bid turns out to be the largest; any bid above 1

is discarded. In case of a tie, let bidder 1 obtain the prize with probability ρ1, and bidder

2 - with probability ρ2, such that ρ1 + ρ2 = 1, ρ1 ∈ (0, 1).

Let the players be risk-neutral expected utility maximizers, with utility functions
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u1() and u2(), respectively. For a pair of bids (b1, b2) the payoff of player i is

ui(b1, b2) =


Vi − bi, if bi > bk, bi ∈ [r, 1]

ρi × Vi − bi, if bi = bk, bi ∈ [r, 1]

−bi, else.

Let us first state the result of how the equilibrium bidding looks in general. The

result is valid for the cases of the two players and the three players, which is considered

in section 3.

Lemma 1. The bids are distributed in the subset of [0, 1]. The subset has the following

properties:

(i) There is no mass of bids in (0, r)

(ii) There can be atoms at {0}, {r}, and {1}. There can be at most one player placing

an atom at {r}. There can be no other atoms

(iii) If there is mass of bids in a set B ⊆ (r, 1), then B is an interval: B = (r, b),

r < b ⩽ 1. At least two players bid everywhere in (r, b). If a third player also

bids in the interior of B, he distributes it continuously in an interval (b, b), where

b ∈ (r, b), but is not uniquely determined

The proof of this lemma is in the appendix A.1.

As for the exact behavior of two players, three qualitatively different types of bidding

emerge in equilibria, depending on how high the valuations are. Following the regions in

figure 1, when one of the valuations is low, (region A), there can be no atoms besides the

ones at 0 and r, with the remaining mass distributed continuously in a subset of (r, 1);

when one of the valuations is medium, (region B), there are atoms at 0, r, and 1, as well

as continuously distributed mass in the subset of (r, 1); when both valuations are high

(regions C and D), there are atoms only. We now list the results for a strict subset of

(V1, V2) ∈ [r,+∞)2, namely the union of the regions A, A′, B, B′, C, and D, as depicted

in figure 1. The remaining cases are symmetric to those we describe.6

6Note also, that there are trivial equilibria for a subset of parameters: if both valuations are below
the reserve price, both agents will bid 0 with certainty; if only one valuation is above the reserve price,
the player with that valuation will bid r with certainty; and if both valuations are high enough, i.e., if
(V1, V2) >

(
1
ρ1
, 1
ρ2

)
, both players will bid 1 with certainty.
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Figure 1: Equilibrium Regions

Proposition 1.i. If V2 < 1 and V2 ⩽ V1 (region A), in the unique equilibrium, the

players’ bids are distributed according to the CDFs:

G1(b) =


0, if b < r

b
V2
, if b ∈ [r, V2)

1, if b ⩾ V2;

G2(b) =


r+V1−V2

V1
, if b < r

b+V1−V2

V1
, if b ∈ [r, V2)

1, if b ⩾ V2.

Player 1 has a positive equilibrium payoff U⋆ = V1 − V2; Player 2 has a zero equilibrium

payoff.

Proposition 1.ii. If V2 = V1 ⩽ 1 (region A′), there are multiple equilibria. In every

equilibrium the bids are distributed according to the CDFs:

G1(b) =


r−t1
V2
, if b < r

b
V2
, if b ∈ [r, V2)

1, if b ⩾ V2;

G2(b) =


r−t2
V2
, if b < r

b
V2
, if b ∈ [r, V2)

1, if b ⩾ V2;

where ti is a parameter that stands for the size of the atom that player i has at r, such

that ti ∈ [0, r], t1 × t2 = 0. Both players have equilibrium payoffs of zero.

If player 1 has a strictly higher valuation, the equilibrium is unique, and only player

1 has an atom at r. If valuations are equal, there are multiple equilibria. Two sources

lead to multiplicity: the identity of the player, who has an atom at r; and the size of that

atom.
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The characterization above is exhaustive, as shown in the Appendix B.1.

Besides the multiplicity of equilibria under equal valuations, the significant departure

from the standard setting of Baye et al. (1996) is that there can be no mass of bids in

(0, r) in equilibrium. Atoms at 0 and r compensate for that gap. Figure 2 shows the

plots of CDFs and comparative statics with respect to the increase in the V2.

b
0

G2

G2

G̃2

V2 Ṽ2
r 1

V1+r−V2
V1

V1+r−Ṽ2
V1

1

b
0

G1

G1

V2
r 1

r
V2

1

G̃1

Ṽ2

Figure 2: Distributions of bids and comparative statics with respect to V2

Note that in regions A and A′, the support of bids expands with V2. As V2 becomes

greater than 1, the support cannot expand further. At that point, equilibria of regions B

and B′ apply:

Proposition 2.i. If 1 < V2 ⩽ 1−ρ1r
ρ2

, ρ22V2 − ρ2 < ρ21V1 − ρ1 (region B), in the unique

equilibrium, the players’ bids are distributed according to the CDFs:

G1(b) =



0, if b < r

b
V2
, if b ∈

[
r, 1

ρ1
− ρ2

ρ1
V2

)
1−ρ2V2

ρ1V2
, if b ∈

[
1
ρ1

− ρ2
ρ1
V2, 1

)
1, if b ⩾ 1;

G2(b) =



r+U⋆

V1
, if b < r

b+U⋆

V1
, if b ∈

[
r, 1

ρ1
− ρ2

ρ1
V2

)
1−ρ2V2+ρ1U⋆

ρ1V1
if b ∈

[
1
ρ1

− ρ2
ρ1
V2, 1

)
1, if b ⩾ 1,

where U⋆ =
ρ2−ρ1+ρ21V1−ρ22V2

ρ21
> 0 is the equilibrium payoff of player 1. Player 2 has a zero

payoff.

Proposition 2.ii. If 1 < V2 ⩽ 1−ρ1r
ρ2

, ρ22V2−ρ2 = ρ21V1−ρ1 (region B′), there are multiple
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equilibria. In every equilibrium the players’ bids are distributed according to the CDFs:

G1(b) =



r−t1
V2
, if b < r

b
V2
, if b ∈

[
r, 1

ρ1
− ρ2

ρ1
V2

)
1−ρ2V2

ρ1V2
, if b ∈

[
1
ρ1

− ρ2
ρ1
V2, 1

)
1, if b ⩾ 1;

G2(b) =



r−t2
V1
, if b < r

b
V1
, if b ∈

[
r, 1

ρ1
− ρ2

ρ1
V2

)
1−ρ2V2

ρ1V1
if b ∈

[
1
ρ1

− ρ2
ρ1
V2, 1

)
1, if b ⩾ 1,

where ti ∈ [0, r], t1 × t2 = 0. Both players have zero payoffs.

It is shown in the appendix B.2 that the above characterization is exhaustive.

There are several changes, as compared to 1.i-1.ii: both players have atoms at 1;

the support of continuous bidding shrinks in V2; player 1’s payoff is not equal to V1 − V2

unless ρ1 = 1
2
. So, favoritism is effective under the bid cap and high enough valuations:

if ρ1 > ρ2, player 1 can have the payoff that is higher than the standard payoff of V1−V2.

Player 2’s payoff, however, remains equal to 0.

What remains the same is the density of bidding in the continuous part. The upper

bound of the continuous part of the support, b, the sizes of atoms, and the equilibrium

payoff of player 1 are determined by the indifference of players between bidding b and

bidding 1.

Figure 3 shows the CDFs for a typical pair of valuations in region B and the tie-

breaking rule ρ1 = ρ2 = 1/2, as well as the comparative statics with respect to the

increase in V2.

b

0

G2

G2

2 − V2
r 1

V1+r−V2
V1

V1+r−Ṽ2
V1

1

G̃2

2 − Ṽ2 b
0

G1

G1

2 − V2
r 1

r
V2

1

G̃1

2 − Ṽ2

Figure 3: Distributions of bids
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Finally, when V2 is high enough so that b decreases all the way to the reserve price,

any continuous bidding region shrinks entirely. In regions C and D, in equilibria, the

bidding is completely characterized by atoms.

Proposition 3.i. If (V1, V2) ∈
[
1−rρ2
ρ1

, 1
ρ1

]
×
[
1−rρ1
ρ2

, 1
ρ2

]
, (region C), there is an equilibrium

in which the players bid according to

b1 =

0, with probability 1−ρ2V2

ρ1V2

1, with probability V2−1
ρ1V2

b2 =

0, with probability 1−ρ1V1

ρ2V1

1, with probability V1−1
ρ2V1

;

and both players have zero payoffs.

Proposition 3.ii. If (V1, V2) ∈
{

1−ρ2r
ρ1

}
×
[
1−rρ1
ρ2

, 1
ρ2

]
, there is a class of equilibra in which

the players bid according to

b1 =


0, with probability (1− t)× 1−ρ2V2

ρ1V2

r, with probability t× 1−ρ2V2

ρ1V2

1, with probability V2−1
ρ1V2

b2 =

0, with probability 1−ρ1V1

ρ2V1

1, with probability V1−1
ρ2V1

;

where t ∈ [0, 1] is a free parameter, and both players have zero payoffs.

Proposition 3.iii. If (V1, V2) ∈
[
1−ρ2r
ρ1

,∞
)
×
[
1−ρ1r
ρ2

, 1
ρ2

]
, (region D), there is an equilib-

rium, in which the players bid according to

b1 =

r, with probability 1−ρ2V2

ρ1V2

1, with probability V2−1
ρ1V2

b2 =

0, with probability V1ρ1−(1−r)
V1ρ1

1, with probability 1−r
ρ1V1

;

and player 1 has a positive equilibrium payoff u⋆1 = V1 − 1−ρ2r
ρ1

The above characterization in propositions 3.i-3.iii is exhaustive because, under such

high valuations and the bidding space limited by 1 from above, there can be no mass in

the interior of (r, 1).

Let us reconsider the setting of 3.iii, but switch the role of the players. It follows then

that for region (V1, V2) ∈
[
1−ρ2r
ρ1

, 1
ρ1

]
×
[
1−ρ1r
ρ2

,∞
)

, there is an equilibrium with player

one mixing between bidding 0 and 1, bringing him a zero payoff, and player two mixing

8



between bidding r and 1, bringing him a positive payoff of V2 − 1−ρ1r
ρ2

. This observation,

combined with the results of propositions 3.i-3.iii allows to state the following:

Corollary 1. In the non-empty region (V1, V2) ∈
[
1−ρ2r
ρ1

, 1
ρ1

]
×
[
1−ρ1r
ρ2

, 1
ρ2

]
, there are three

qualitatively different equilibria. In this region, each player can be a ”winner” (has a

positive payoff) or a ”loser” (has a zero payoff), or both players an be ”losers”.

Corollary 1 shows why it is essential to study the joint influence of the reserve and

the cap. Their aggregate effect allows for the switch of the identity of the ”winner” while

holding the fundamentals fixed. Moreover, the initially disadvantaged player (the one

with the lower ρ2iVi − ρi) can become the ”winner.” Such equilibrium behavior might be

useful for the principal-designer, who wishes to favor the disadvantaged.

This multiplicity of equilibria that allows for switching of roles and benefiting the

disadvantaged happens when both valuations are high enough. In this region of valua-

tions, whoever commits to bidding r with a positive probability, becomes the ”winner.”

And in that region, with high valuations, each player can be the one to commit to bidding

r.

2.1 Characterizing expenditures

Knowing the equilibrium distributions of bids allows to compute various expected charac-

teristics of bids, such as, the individual expenditures of each player, the sum of expendi-

tures, the variance of expenditures, and so on. Depending on the exact economic context,

and the interpretation of the bids (productive effort in preparation for an exam, a sports

team budget, R&D expenditure) the contest organizer might have different objectives -

maximize the total average expenditures/efforts; make sure that individual expenditures

are above a certain threshold; compress the discrepancy between individual expenditures;

increase the probability one specific player wins the prize; and so on . In the appendix C,

I provide the expressions for individual average expenditures and their sum, as examples

of the target variables, and the ways they behave in the current environment.

In a working paper, Muratov (2021), I show that there is a mapping between all-pay

auctions and a class of information design games, in which competing entrepreneurs-

senders try to persuade a single receiver to invest into their project, rather than the

opponent’s, as the one studied in Boleslavsky and Cotton (2018). Average expenses in

the all-pay auctions environment correspond to prior expected qualities in the information

9



design environment.

Using the expenditures formulae from that appendix, I plot the sum of the bidders’

expenditures as a function of V2 (figure 4). Several values for V1 are considered: low

(r < V < 1), average-low (1 < V1 <
1−ρ2r
ρ1

), average-high (1−ρ2r
ρ1

< V1 <
1
ρ1

), and high

(V1 > 1
ρ1

).7 Together with the expenditures in the all-pay auction with the reserve price

r and the bid cap of 1, the graphs also depict the expenditures in cases of no restrictions;

with just the reserve price r; and just the bid cap of 1. It can be seen although there is no

uniform ranking, the all-pay auction with the reserve price and the bid cap can provide

the largest total expenditures for some ranges of valuations.

0
0

r V1

r

V1

V2

revenue

(a) V < 1

0
0

r 1 V1

r

V1

ρ21V1+ρ2−ρ1

ρ22

V2

revenue

(b) 1 < V1 < 1−ρ2r
ρ1

0
0

r 1 1
ρ2

r

V1

1−ρ1r
ρ2 V1

V2

revenue

(c) 1−ρ2r
ρ1

< V1 < 1
ρ1

0
0

r 1 1
ρ2

V1

r

2

V1

reserve and bid cap
standard APA

reserve price only
bid cap only

V2

revenue

(d) V1 > 1
ρ1

Figure 4: Revenue comparison for different values of V1

7For parameters with multiple equilibria, the equilibria with maximal expenditures were chosen. Also
note that discontinuities in the expenditures are due to multiplicity of equilibria on the boundaries of
regions.
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3 Three Bidders Case

Studying the case of two bidders in the all-pay auction in the presence of the reserve

price and the bid cap has brought new insights, if we compare the results to the ones

in the settings of Baye et al. (1996) and Che and Gale (1998). Thus, for a range of

parameters, (V1, V2) ∈ C ∩ D, in equilibrium bidding CDFs are characterized by atoms

only, but not purely at the top. In the same range of parameters there are three types

equilibria. In one, both players bid 0 and 1 only, in another, player 1 bids r instead

of 0 and has a positive payoff, and in the third type it is player 2 who bids r instead

of 0 and has a positive payoff. Thus, in this region, it is possible that the player with

initial disadvantage, i.e. lower valuation of the prize, in equilibrium gets a positive payoff,

unlike in the setting of Baye et al. (1996), and that phenomenon is not driven by the

tie-breaking rule.

Studying this environment with the third bidder allows to perform a robustness

check of the results, derived in the two players case; and it also brings new insights, not

possible under the two bidders. Thus, multiple equilibria are possible even for ranges

of parameters that result in equilibria with some continuous bidding. The nature of

this multiplicity is of a different kind than the one in Baye et al. (1996) with three or

more players: in addition to the degree of freedom in when one of the three players joins

the continuous bidding, there is multiplicity of the positive equilibrium rent, and the

equilibrium support, which all affects the shapes of CDFs. Another new finding is that

it is possible for all three players to bid actively for a range of completely asymmetric

valuations V1 ̸= V2 ̸= V3, with two players’ bidding involving continuous support, and

the third player bidding at the top and the bottom.

Throughout this section only the symmetric tie-breaking rule will be considered, i.e

1/2-1/2 chance of getting the item if the two bidders tie, and 1/3-each chance of getting

the item if the three bidders tie.

Let us first identify the restrictions on the valuations of player 3, V3, such that

equilibria from section 2 hold; i.e. player 3 stays inactive and effectively only players 1

and 2 are the bidders.

Proposition 4.i. There are non-empty regions of parameters, such that only players 1

and 2 are active bidders. Depending on how high V1 and V2 are, the results are:

11



- For the parameters V1 ⩾ V2 ⩾ V3, V2 ∈ [r, 1), there are equilibria as in the en-

vironments of propositions 1.i and 1.ii. Moreover, if V2 > V3, these are all the

equilibria

- For the parameters V1 ⩾ V2 ∈ [1, 2 − r), V3 ⩽ 3V1V2

4+3V1−5V2+V 2
2

, there are equilibria as

in the environments of propositions 2.i and 2.ii, under ρ1 = ρ2 = 1/2.

- For the parameters (V1, V2) ∈ [2− r, 2]2, V3 ⩽ 3V1V2

4+V1(V2−1)−V2
, there are equilibria as

in the environments of propositions 3.i and 3.ii.

- For the parameters (V1, V2) ∈ [2− r,∞)× [2− r, 2], V3 ⩽ 3V1V2

3V1+V2+r(4−V2)−4
, there is

equilibrium as in the environment of proposition 3.iii.

If V3 < min{1, V1, V2}, these are all the equilibria.

The values for V3 in the regions of the equilibria regimes in the above proposition

follow from postulating the player 1’s and 2’s behavior to be as in the results of the

section 2, and making it unprofitable for the player 3 to bid anywhere above 0.

Note that when the valuation of the third player is strictly below the bid cap, V3 < 1,

and strictly smaller than the other valuations, the analysis is essentially the same as with

the two bidders: the third bidder is always inactive.

The case of V1 ⩾ V2 = V3 = v with v ∈ [r, 1] leads to the multiplicity of equilibria:

two bidders, 1 and 2 are always active in (r, v), while the third player joins the bidding

in (b̃, v), b̃ ∈ [r, v].8 The indeterminacy of b̃ is what creates the multiplicity of equilibria.9

Proposition 4.ii. Suppose V1 ⩾ V2 = V3 = v, and v ∈ [r, 1). Then, for each b̃ ∈ [r, v]

there is an equilibrium where players bid according to the CDFs:

– G1(b) =


0, if b < r

b
v
×
√

V1

V1+b̃−v
, if b ∈ [r, b̃)

b
v
×
√

V1

V1+b−v
, if b ∈ [b̃, v]

, – G2(b) =



r+V1−v√
V1(b̃+V1−v)

, if b ∈ [0, r)

b+V1−v√
V1(b̃+V1−v)

, if b ∈ [r, b̃)

√
b+V1−v√

V1
, if b ∈ [b̃, v]

,

– G3(b) =


√

b̃+V1−v√
V1

, if b ∈ [0, b̃)
√
b+V1−v√

V1
, if b ∈ [b̃, v]

.

8Players 2 and 3 can switch their roles.
9Such multiplicity is of equilibria is of the same nature as the one in Baye et al. (1996).
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If V1 = V2, player 1 can have an atom at 0, with the total mass of 0 and r being
r
v
×
√

V1

V1+b̃−v
. These CDFs describe all equilibria for such set of parameters.

Overall, in this case the higher value bidder has an atom at the reserve prise, while the

other two bidders have atoms at the 0. When two players are active in the interior, their

bids are uniformly distributed, and when three players are active the bids are distributed

in such way, that the maximum of any two bids is distributed uniformly.

The proof for this case is located in D.2.

For the case of the second- and third-order valuations still being equal to each other

and taking medium values, the distributions of bids are similar to the case of results on

Proposition 4.ii, but now there appears and atom at the bid cap, 1. There is no explicit

way to express the equilibrium objects, namely the bidder one’s equilibrium payoff and

the upper bound of the continuous part of the support. They follow from the system of

non-linear equations.

Proposition 4.iii. For the set of valuations V1 ⋛ V2 = V3 = v, V1 ⩾ 1, v ∈ [1, 3], there

is a non-empty subset, such that equilibrium CDFs are

G1(b) =
b

v
×

√
V1

b̃+ U
I{b∈[r,b̃)} +

b

v
×
√

V1
b+ U

I{b∈[b̃,b̂)} +
b̂

v
×

√
V1

b̂+ U
I{b∈[b̂,1)} + I{b⩾1}

G2(b) =
r + U√
V1(b̃+ U)

I{b∈[0,r)} +
b+ U√
V1(b̃+ U)

I{b∈[r,b̃)} +G3(b)I{b⩾b̃}

G3(b) =

√
b̃+ U√
V1

I{b∈[0,b̃)} +
√
b+ U√
V1

I{b∈[b̃,b̂)} +

√
b̂+ U√
V1

I{b∈[b̂,1)} + I{b⩾1}

where U , player 1’s positive equilibrium rent, and b̂ follow from the system of equations:
1
3
+ 1

3

√
U+b̂
V1

+ 1
3
U+b̂
V1

= 1+U
V1

1
3

√
U+b̂
V1

+ 1
6
b̂
v
+ 1

6
U+b̂
V1

+ 1
3
b̂
v

√
U+b̂
V1

= 1
v

√
U+b̂
V1
.

(A)

Moreover, for a non-empty subset of valuations, two solutions, (U, b̂), to the above system,

constitute equilibrium objects. If U = 0, player 1 can have an atom at 0, with the total

mass of 0 and r being r
v

√
V1

b̃
.

In the appendix D.3 I derive the algebraic expressions for the regions of valuations,

such that the type of equilibrium from the Proposition 4.iii holds. Here I demonstrate
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the results with several numerical examples.

Let r = 0.03, V1 = 2.56, V2 = V3 = 1.5. Then, the solution to system A that satisfies

the equilibrium requirements U ⩾ 0, b̂ ⩾ r is, approximately,

U = 1.07954, b̂ = 0.5541.

Note that since one of the players 2 or 3 can join the bidding at any b̃ ∈ [r, b̂], which causes

the multiplicity of equilibria. We can plot equilibrium CDFs for this type of equilibria

for some choice of b̃.

0 1

1

r b̃ b̂
b

G1

(a) G1

0 1

1

r b̃ b̂

G2

G3

b

G2 and G3

(b) G2, G3

Figure 5: Distributions of bids in the environment of 4.iii

Consider now different valuations of players 2 and 3 V2 = V3 = 2.57, fixing r =

0.03 and V1 = 2.56, as before. The solutions to system A that satisfy the equilibrium

conditions are, approximately:U
1 = 0.103775, b̂1 = 0.04028

U2 = 0.009232, b̂2 = 0.05451.

Notice that this example demonstrates that under some parameters a slightly disadvan-

taged player 1 can have a positive equilibrium rent, and moreover, some parameters can

lead to two classes of equilibria.10

Comparative statics of equilibrium U and b̂ with respect to v is not trivial due to
10There are multiple equilibria within each class, because player 3 can join the continuous bidding

anywhere in (r, b̂), and that also affects the behavior of players 1 and 2. Each class is represented by a
single solution (U, b̂) to the system A.

14



non-linearity of the condition of system A and the fact that there can be two pairs (U, b̂)

that satisfy the equilibrium condition. On the figure 6, we plot the graphs of U and b̂ with

respect to the value of v, given V1 = 2.5, r = 0.01; and compare them we the behavior

of U and b̂ for the case of players 1 and 2 being active (i.e. the case of V3 = 0). Note the

multiplicity of equilibria for v high enough.

1
0

V1

V1 − 1
with three player
with two player

v

U

1
0

2− r V1

1

with three player

with two player

v

b̂

Figure 6: Comparative statics of U and b̂ in 4.iii

Proposition 4.iv. There exists a non-empty subset of (V1, V2, V3) ∈ (1,+∞) such that

there is an equilibrium, where player 1 (2) has an atom at r (0), bids continuously in

(r, b̂), b̂ > r, and has an atom at 1, while player 3 only bids 0 and 1 with non-zero

probabilities. Player 1 has a non-negative equilibrium payoff U . The equilibrium objects

(U, b̂, P3), where P3 is the probability of player 3 bidding 0, follow from the system
1
3
V1 +

1
6
P3V1 +

1
6
b̂+U
P3

+ 1
3
(b̂+ U) = 1 + U

1
3
V2 +

1
6
P3V2 +

1
6

b̂
P3

+ 1
3
b̂ = 1

1
3
V3 +

1
6
b̂+U
V1P3

+ 1
6

b̂
V2P3

+ 1
3
(b̂+U)b̂

V1V2P 2
3

= 1

(B)

If U = 0, player 1 can have an atom at 0, arbitrarily splitting the mass between 0 and r.

In the appendix D.4 I describe how to establish the region of parameters, in which

this type of equilibrium holds. Here I provide examples of parameters for this type of

equilibria to demonstrate that such region is non-empty.

For example, for the parameters V1 = 2.7, V2 = 2, V3 = 2.66, r = 0.07, the solution

to system B, that satisfies equilibrium conditions, is (approximately) U = 0.729137,

b̂ = 0.165146, P3 = 0.72. Note that for this solution, the values of CDFs at b̂ are less

than one, G1(b̂) =
b̂

V2P3
= 0.114652, G2(b̂) =

b̂+U
V1P3

= 0.4599; and that player 3 does not
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have incentives to bid anywhere in in (r, b̂):

V3G1(b)G2(b)− b = V3 ×
b

V2P3

× b+ U

V1P3

− b

= b

(
V3

1

V2P3

× b+ U

V1P3

− 1

)
⩽ b

(
V3

1

V2P3

× b̂+ U

V1P3

− 1

)
= b× (−0.150715).

Another thing to notice about this example is that player 1’s payoff is larger than

V1 − V2 and V1 − V3. So, the standard payoff result, that under some assumptions in

equilibrium the top player’s payoff is V1 − maxi ̸=1 Vi does not hold in this environment

for this type of equilibrium.

Consider another example of parameters and the correspondent solutions. For

V1 = 2.62, V2 = 2.621, V3 = 2.875, r = 0.01, there is a couple of solutions that sat-

isfy equilibrium conditions: U I = 0.12, b̂I = 0.017578, P I
3 = 0.249; and U II = 0.00075,

b̂II = 0.0425, P II
3 = 0.1454. Beside the multiplicity of equilibria for these parameters, it

is also noteworthy that player 1, the one with positive rent, has the lowest valuation in

this example.

Let us now describe two types of equilibria, where all players are active and bids’

distributions are atomic only. The first of such two types is the one, where every players’

equilibrium payoff is zero, and they all bid 0 and 1:

Proposition 5.i. There exists a non-empty subset of (V1, V2, V3) ∈ (1, 4)3 such that there

is an equilibrium, where players bid 0 and 1, only. Player i bids 0 with a probability Pi,

as in 

P1 =

√
3V1(V2−4)(V3−4)

2
√

(4−V1)V2V3

− 1
2

P2 =

√
3V2(V1−4)(V3−4)

2
√

(4−V2)V1V3

− 1
2

P3 =

√
3V3(V1−4)(V2−4)

2
√

(4−V3)V1V2

− 1
2
.

(C)

The region is defined by the conditions (∩i{0 ⩽ Pi ⩽ 1}) ∩ (∩i{Vi
∏

j ̸=i Pj ⩽ r}).
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The probabilities in the above proposition follow from solving the system

Vi

(
P{bidj = 0}P{bidk = 0}+ 1

2
(1− P{bidj = 0})P{bidk = 0}+

+
1

2
(1− P{bidj = 0})P{bidk = 0}+ 1

3
(1− P{bidj = 0})(1− P{bidk = 0})

)
− 1 = 0,

(i, j, k) ∈ {1, 2, 3}, i ̸= k ̸= j,

with respect to P{bidi = 0} .
= Pi. There are two solutions to that system, but only one

allows for joint possibility of 0 ⩽ Pi ⩽ 1. The restrictions, defining the region, follow

from feasibility of probabilities and absence of profitable deviation to bidding b ∈ (0, 1).

Another type of equilibrium with atomic distributions is the one, where one player

has a positive equilibrium payoff and bids r instead of 0:

Proposition 5.ii. There exists a non-empty subset of (V1, V2, V3) ∈ (1, 4)3 such that there

is an equilibrium, where player 1 bids r and 1, with probabilities P1 and 1−P1, and has a

payoff U ⩾; and players 2,3 bid 0 and 1, only. Player i ∈ {2, 3} bids 0 with a probability

Pi, as in 

P1 =

√
3V1(V2−4)(V3−4)

2
√

(4−V1)V2V3

− 1
2

P2 =

√
3V2(V1−4)(V3−4)

2
√

(4−V2)V1V3

− 1
2

P3 =

√
3V3(V1−4)(V2−4)

2
√

(4−V3)V1V2

− 1
2
.

(F)

Player 1’s payoff is

U = 3− r −
√

3(4− V1)V1(V2(V3 − 2)− 2V3)

2
√

(4− V2)V2(4− V3)V3
− V1

2
.

The region is defined by the conditions (∩i{0 ⩽ Pi ⩽ 1}) ∩ (∩i∈{2,3}{Vi
∏

j ̸=i Pj ⩽ r}) ∩

{U ⩾ 0}. If U = 0, player 1 is indifferent between r and 0, and can split the mass between

these two bids.

Note that after we were to consider all permutations of valuations in all of the above

propositions of the section 3, we would have characterized all types of equilibria possible

under three players, except for those where all three players are inactive; and those that

result in players bidding 1 with certainty.
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4 Conclusion

In this paper the equilibria of the all-pay auctions with the reserve price and the bid cap

were characterized. It was shown that equilibrium bidding is characterized by atoms at 0,

the reserve price, and the cap, as well as continuous bidding between the reserve and the

cap. It was shown that multiple equilibria are possible for some parameter ranges. In case

of three players, the following interesting features can emerge in equilibria: the player

with a slight disadvantage can have the positive payoff; three players with completely

different valuations can all actively compete for the single prize; the “winning” player

can have different payoffs across different equilibria.
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A Appendix

A.1 General Characterization of Equilibria

Let us show that all the equilibria in All-Pay Auctions with a reserve price and a bid cap

are follow the characterization in lemma 1. We do so in the series of lemma below.

Lemma A.1. There is no mass of bids above 1

Proof. Suppose by way of contradiction that there is at least one player, who places a bid

greater than 1 with a non-zero probability. Recall that 1 is the bid cap. Thus, players who

place bids above 1 have the same chances of obtaining the item as if they were bidding

1 exactly, but they have to pay more because of higher bids. Thus, bidding above 1 is

strictly dominated.

Lemma A.2. There is no mass of bids in (0, r)

Proof. Suppose by way of contradiction that there is at least one player i, for whom

P{bidi ∈ (0, r)} > 0. Since r is the reserve price, if the actual bid of player i realizes

as b ∈ (0, r), player i does not obtain the object, but has to pay a positive amount of

money. Thus, a strategy of player i that involves bidding in the subset of (0, r) with some

non-zero probability is dominated by a similar strategy that replaces the bids in (0, r)

with the zero-bid, otherwise remaining the same.

Lemma A.3. There are no atoms in (r, 1).

Proof. Suppose, by way of contradiction, that there is at least one player, i, who in

equilibrium has an atom of size P > 0 at a bid bi ∈ (r, 1). Any other player would not

have an atom at bi, since bidding slightly above increases the costs continuously, but

causes a discontinuous upward jump in the probability of winning the object. If nobody

else besides i bids anywhere in the region of bi, i would be better off lowering the bi bid.

If there is a player k ̸= i who bids with a non-zero probability in the interval (bi − ε, bi),

we can choose a small ε′ ∈ (0, ε), such that replacing any bid from (bi − ε′, bi) to bi + ε

increases the expenditures by at most 2ε′ but increases the probability of winning the

object by at least P . We are free to choose ε′ so that the net change of k’s payoff is

positive. Thus, k would have a gap in bids below bi. This again would cause i to decrease

bi
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Lemma A.4. There can be no more than one atom at r

Proof. Suppose, by way of contradiction, that two or more players have atoms at r. Then,

any of them would be better off by bidding slightly higher than r.

Let us introduce the following notation b
.
= sup{∪iBRi ∩ (r, 1)}, b .

= inf{∪iBRi ∩

(r, 1)}. Then, the following result holds

Lemma A.5. The set ∪i{BRi ∩ (b, b)} is closed relative to (b, b).

Proof. If the set ∪i{BRi ∩ (b, b)} is empty, the result holds trivially. If, on the contrary,

∪i{BRi ∩ (b, b)} is non-empty, it means there are at least two players who bid in the

interior of (b, b) (it cannot be that only one player bids there, since for him it doing so

would increase the expenditures, but not increase the probability of winning). Consider

any player k ∈ {1, 2, 3}, for whom BRk ∩ (b, b) ̸= ∅. For all bids b in BRk ∩ (b, b) ̸= ∅

we can write down Vk ×
∏

j ̸=kGj(b) − b = Uk, where Gj is a respective CDF of player

j’s bids, and Uk is k’s equilibrium payoff. Uk is a point in R, hence, a closed set. For

bids b strictly greater than r, Gj(b) is a continuous function for all j ∈ {1, 2, 3}, due to

the absence of atoms. Thus, Vk ×
∏

j ̸=kGj(b) − b is also a continuous function. For a

continuous set, the pre-image of a closed set is a closed set. This establishes the claim of

the lemma above.

Lemma A.6. The set ∪i{BRi ∩ (b, b)} is an interval.

Proof. Let ∪i{BRi∩(b, b)} be non-empty. Suppose, by way of contradiction, that there is

a point b∗ in (b, b) that does not belong to a Best Response Set of any of the players. By

∪i{BRi ∩ (b, b)} being closed relative to (b, b), there is an open interval, that contains b∗,

any point of which is not in any of the Best Response Sets. Pick the largest such interval

and denote it (b∗, b∗). b∗ must be in the Best Response Set of some player. However,

since nobody bids in (b∗, b∗), the probability of winning the item from bidding b∗ is the

same as from bidding b∗, while b∗ is more costly. This makes b∗ less profitable than b∗,

leading to a contradiction.

Lemma A.7. If ∪i{BRi∩ (b, b)} = (b, b) is non-empty, all players have atoms in the set

{0, r}. Moreover, there are at least two players having an atom at 0.
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Proof. Suppose, by way of contradiction, that there is no mass in {0, r}. That would

mean, by absence of atoms in (r, 1), that probability of winning the item from bidding b

is zero, while the expenditures are strictly positive. That, in turn results in a negative

payoff for any player from bidding b, thus contradicting to b being in a Best Response

set. The fact that at least two players have atoms at 0 therefore follows from the Lemma

A.4.

Lemma A.8. For players i and k, i ̸= k, who have atoms at 0 Gi(b)× Vk = Gk(b)× Vi,

for b ∈ (b, b), being a point of increase of both Gi and Gk

Proof. Players, who have atoms at 0, have an equilibrium payoff of 0. A point of a

increase of a CDF of a player must yield him an equilibrium payoff. So, for the two

players, i and k, it holds that

ViGj(b)Gk(b)− b = 0

VkGj(b)Gi(b)− b = 0,

from which the assertion of the lemma follows, given that Gj(b) > 0.

Lemma A.9. For a player, who has an atom at zero, his CDF is increasing on an

interval (a, b̃) ⊆ (a, b), a ⩾ b, this CDF is increasing on (a, b).

Proof. Denote by i the player who has an increasing CDF on (a, b̃) and an atom at zero.

Suppose, by way of contradiction, that the CDF of player i is constant on (b̃, c) ⊆ (b̃, b̂),

c > b̃. By the Lemma A.6, there is always a pair of players bidding in (b̃, c), and by the

Lemma A.7, at least one of them has an atom at zero, and, hence, a zero equilibrium

payoff. Call that player k. From the Lemma A.8, it holds that Gi(b̃)Vk = Gk(b̃)Vi > 0.

Let ε > 0 be such that at b̃ + ε player k is still bidding. Then, it must be that for any

x ∈ (b̃, b̃+ ε), the payoff of i from bidding such x would be weakly lower than the payoff

of k:

Vi
∏
j ̸=i

Gj(x)− x ⩽ Vk
∏
j ̸=k

Gj(x)− x⇒ ViGk(x) ⩽ VkGi(x),

which, together with the Lemma A.8 contradicts to Gi being constant on (b̃, b̃ + ε) and

Gk being strictly increasing there.
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Lemma A.10. If (r, b) is non-empty, at least one player, who has an atom at zero,

randomizes continuously on (r, b).

Proof. A different way to write the statement of the Lemma above is b = r. Otherwise,

bidding anywhere in (r, b) would be a profitable deviation, since it would yield the same

probability of obtaining the item as from bidding b, but would incur smaller expenditures.

Lemma A.11. If b > r, and if a player has an atom at r, this player randomizes

continuously on (r, b).

Proof. Denote the player, who has an atom at r by i. The other two players, j and k, must

have atoms at zero and, hence, a zero equilibrium payoff. Denote by u∗i ⩾ the equilibrium

payoff of player i. Suppose, by way of contradiction, that player i rejoins bidding at some

b̃ ∈ (r, b). This implies that bidding in (r, b̃) gives him a weakly lower payoff, than u∗i .

Denote by P the mass that i places at r. From players j and k having a zero equilibrium

payoff, it follows that in the interval (r, b̃), the CDFs of j and k are given by Gj(b) =
b

P×Vk
,

and Gk(b) =
b

P×Vj
. Above b̃, in order for equilibrium payoffs to hold, the CDFs of all three

players must given by Gi(b) =
b
√
Vi√

VjVk(b+u∗
i )

, Gj(b) =
√

(b+u∗
i )Vj

VkVi
, Gk(b) =

√
(b+u∗

i )Vk

VjVi
. Since

there can be no atoms in (r, 1), smooth-pasting must hold: CDFs must be continuous at

b̃. That allows to pin down the size of i’s atom at r: P = b̃
√
V1√

VjVk(b̃+u∗
i

. That, in turn,

allows to determine i’s payoff from an arbitrary bid b in [r, b̃):

ViGj(b)Gk(b)− b = Vi
b2

P 2VkVj
− b = Vi

b2(b̃+ u∗i )

b̃2Vi
− b =

b2(b̃+ u∗i )

b̃2
− b.

If we plug in b = r into the expression above, we get that the payoff from bidding r is

equal to u∗i , i’s equilibrium payoff, only if b̃ = r. Otherwise, the payoff from bidding r is

lower, and player i would not be willing to put an atom at r, contradicting the condition

of the lemma.
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B Appendix

B.1 Completeness of characterization in 1.i and 1.ii.

For the case V1 > V2, recall the general characterization lemma 1, and also apply the

following steps:

- There is no mass strictly above V2, as player 2 won’t ever bid strictly above his

valuation.

- 0 is never in a Best Response set of player 1, since he can secure a positive payoff

by bidding slightly above V2.

- player 2 has 0 in the Best Response set.

- A strategy profile according to which player 1 bids r with a unit probability is not

an equilibrium. If it was an equilibrium, player 2 would always bid slightly above

r outbidding player 1. However, player 1 can always make sure he has a positive

payoff.

- P{bid1 > r} > 0. Follows from the point above.

- P{bid2 ⩾ r} > 0. Otherwise, player 1 wouldn’t bid above r.

- In equilibrium for both players the subset BR ∩ (r, V2) is closed relative to (r, V2).

As follows from lemma 1.

- BRj ∩ (r, V2) is an interval for both players, which also follows from lemma 1.

Denote inf(BRi ∩ (r, V2)) = b, and sup(BRi ∩ (r, V2)) = b.

- b = V2.

Suppose that b < V2. Then player 2 can place a bid somewhere between b and V2,

win with probability 1 and have a positive payoff. This contradicts to 0 being in

his best response set, which was established above.

- For players 1 and 2 distributions of their best responses on (b, V2) have densities

and are equal to 1
V2

and 1
V1

, respectively.
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For a bid x ∈ (b, V2) of player j it must hold that Vj × P{bidk<x} − x = u, where u

is player-specific equilibrium payoff. So, for x, x′ : b ⩽ x < x′ ⩽ V2 it holds that

Vj × P{bidk<x} − x = Vj × P{bidk<x′} − x′ ⇒ P{bidk<x′} − P{bidk<x} = (x′ − x)/Vj ⇒

limx′→x+0
P{bidk<x′}−P{bidk<x}

x′−x
= 1/Vj, which establishes existence and expression for

the right derivative, with similar logic applying to the left derivative.

- Player 1 has an atom at r.

Otherwise, player 1 would not be able to reach a unit value of her/his CDF by V2.

- b = r, as follows from lemma 1.

- Player 2 has an atom at 0.

In order for him to reach a unit value of CDF by V2.

The sizes of atoms for both players are uniquely pinned down.

For V1 = V2 the following steps apply:

- There is no mass in (0, r)

- There is no mass above V1 = V2 = v.

- There are no atoms above r.

- There cab be no two atoms at r.

- mini inf(BRi) = 0

- In equilibrium for both players the subset BR ∩ (r, V ) is closed relative to (r, v).

- BR ∩ (r, v) is non-empty. Otherwise, the player with 0 in his best response would

be able to have a positive payoff.

- BRi ∩ (r, v) is an interval for both players.

- BR1 ∩ (r, v) = BR2 ∩ (r, v).

- sup(BR1∩ (r, v)) = sup(BR2∩ (r, V )) = v. Otherwise, the player with 0 in his best

response would be able to have a positive payoff.
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- PDFs of distributions of bids of both players in the interval BR ∩ (r, V2) are equal

to 1
v
.

- inf(BR ∩ (r, V )) = r.

- The fact that CDFs have to reach value of 1 at v, and the value of densities in (r, V )

pin down that P [bid1 ∈ {0, r}] = P [bid2 ∈ {0, r}] = r
V

. Absence of two atoms at r

means also that P{bid1 = r} × P{bid2 = r} = 0.

B.2 Completeness of characterization in propositions 2.i and 2.ii

Start with the case of ρ22V2 − ρ2 < ρ21V1 − ρ1:

- SThere can be no equilibria such that at least one of the players bids 1 with a unit

probability.

If player 1 always bids 1 the only way for player 2 to win the prize is to also bid

1, which will result in player 2 getting the prize with probability ρ2. This in turn

will lead to player 2’s payoff of ρ2 × V2 − 1 ⩽ ×(1− ρr)− 1 < 0. Thus player 2 will

bid 0 in response to player 1’s bid of 1, hence player 1 has incentives to lower his

bid. If player 2 always bids 1, depending on player 1’s valuation, he would always

bid 0 or 1. In both cases player 2 would be better of lowering his bid (by a small

amount, or down to 0, respectively).

- There can be no two atoms at r.

- mini∈{1,2}(inf(BRi)) = 0.

- A profile such that both players bid only a 0 and a 1 with some probabilities is

not an equilibrium. Suppose, by contradiction, there is such an equilibrium profile.

It would results in P{bidi = 0} = 1−ρkVk

Vkρi
, which results in profitable deviation to

bidding r for any of players.

- For the similar reason, a profile such that one player bids r and 1 only, and the

other bids 0 and 1 only, is not an equilibrium. Thus, in equilibrium, the probability

of a bid in (r, 1) is greater than zero.

- BRi ∩ (r, 1) is an interval for both players.
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- In an equilibrium BR1 ∩ (r, 1) = BR2 ∩ (r, 1), and inf{BRi ∩ (r, 1)} = r.

- Densities for players 1 and 2 in interval (r, sup(BR ∩ 1)) are equal to 1
V2

and 1
V1

,

respectively.

- Either sup(BR1 ∩ (r, 1)) = sup(BR2 ∩ (r, 1)) = 1 or P{bidj = 1} > 0 for both

players. If it wasn’t so, the player with 0 in his best response would be able to

achieve a positive payoff by bidding 1 with a higher frequency.

- sup(BR1 ∩ (r, 1)) = sup(BR2 ∩ (r, 1)) is equal either to 1/ρ2 − (ρ1/ρ2)V1 or to

1/ρ1 − (ρ2/ρ1)V2. Let player j have 0 in his best response. Then b is determined

by him being indifferent between bidding 1 and 0, and b and 0:

VjP{bidk < b} − b = Vj
(
ρj(1− P{bidk < b}) + P{bidk < b}

)
− 1 = 0.

- Only one player has 0 in his best response. Both of them cannot be indifferent

between 0 and 1/ρ2 − (ρ1/ρ2)V1, or 0 and 1/ρ1 − (ρ2/ρ1)V2.

- In equilibrium it is player 2 who has 0 in his best response. Had it been player 1

who has 0 in a best response, b would be 1/ρ2 − (ρ1/ρ2)V1, from 1’s indifference.

Then, condition on 1’s density and 2’s indifference between 1/ρ2 − (ρ1/ρ2)V1 and

1 would lead to such values of 1’s cdf in (r, 1/ρ2 − (ρ1/ρ2)V1), that would give a

second player a negative payoff from bidding there. He would be better off not

including (r, 1/ρ2 − (ρ1/ρ2)V1) into his BR as he can always secure a payoff of 0.

- (BR1 ∩ (r, 1)) = (BR2 ∩ (r, 1)) = (r, 1/ρ1 − (ρ2/ρ1)V2).

- Values of 1’s CDF at (r, 1/ρ1 − (ρ2/ρ1)V2) ∪ 1 are pinned down by 2’s indifference

between 0 and (r, 1/ρ1 − (ρ2/ρ1)V2) ∪ 1, and by 1’s PDF; hence, 1’s atom at r is

uniquely defined.

- Values of 2’s CDF at (r, 1/ρ1 − (ρ2/ρ1)V2) ∪ 1 are pinned down by 1’s indifference

across [r, 1/ρ1 − (ρ2/ρ1)V2) ∪ 1, and by 2’s PDF; hence, 2’s atom at 0 is uniquely

defined.

The case ρ22V2 − ρ2 = ρ21V1 − ρ1 is similar, but now the upper bound of interior bidding,

sup(BR ∩ (r, 1)) = 1/ρ1 − (ρ2/ρ1)V2 and 1/ρ1 − (ρ2/ρ1)V2) = 1/ρ2 − (ρ1/ρ2)V1. This
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makes both players indifferent between bidding at 0 and at 1, resulting in a zero payoff

and multiplicity of equilibria due to unidentified value of atom at r; and the identity of

the player who would bid r.

C Expenditures in the Two Bidders case

Denote bidder one’s expenditures, and bidder two’s expenditures as α1, and α2, respec-

tively. For the valuations in the region A, V2 < 1, V2 ⩽ V1, the expenditures are

(α1;α2) =

(
V2
2

+
r2

2V2
;
V 2
2 − r2

2V1

)
.

In the region A′, V1 = V2 ⩽ 1, the expenditures are

(α1;α2) =

(
V2
2

− r(r − 2t1)

2V2
;
V2
2

− r(r − 2t2)

2V2

)
,

where ti ∈ [0, r], t1 × t2 = 0, representing the multiplicity of equilibria in this region.

In the region B, 1 < V2 ⩽ 1−ρ1r
ρ2

, ρ22V2 − ρ2 < ρ21V1 − ρ1, the expenditures are

(α1;α2) =

(
ρ21 (r

2 + V 2
2 ) + (ρ2 − ρ1)(V2 − 1)2

2ρ21V2
;
ρ22V

2
2 + ρ1 (2− ρ1r

2)− 1

2ρ21V1

)
.

Note that if the tie-breaking rule is fair, ρ1 = 0.5, the expenditures in this region coincide

with the expenditures in region A. In B′, the expenditures are

α1 =
V2(ρ

2
2V2 − 2(ρ2 − ρ1)) + 1− ρ1(2 + r(r − 2t1)ρ1)

2V2ρ21
,

α2 =
V 2
2 ρ

2
2 + ρ1(2− r(r − 2t2)ρ1)− 1

2V1ρ21
,

ti ∈ [0, r], t1 × t2 = 0.

Finally, in the regions C, C′, and D, the expenditures are:

-

(α1;α) =

(
V2 − 1

ρ1V2
;
V1 − 1

ρ2V1

)
,
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in C, (V1, V2) ∈
[
1−rρ2
ρ1

, 1
ρ1

]
×
[
1−rρ1
ρ2

, 1
ρ2

]
;

-

(α1;α2) =

(
V2 − 1 + r × t(1− ρ2V2)

ρ1V2
;
1− r

1− ρ2r

)
,

t ∈ [0, 1], in C′, (V1, V2) ∈
{

1−ρ2r
ρ1

}
×
[
1−rρ1
ρ2

, 1
ρ2

]
;

-

(α1, α2) =

(
V2(1− rρ2) + 1− r

V2ρ1
,
1− r

ρ1V1

)
,

in D, (V1, V2) ∈
[
1−(1−ρ)r

ρ
,∞
)
×
[
1−ρr
1−ρ

, 1
1−ρ

]
.

D Proofs for the Three Bidders Case

D.1 Proof of completeness of 4.i, for V3 < 1

We know from the Proposition 1 that all the equilibria are characterized by atoms at

{0}, {r}, and {1}, and also by continuously distributed mass in (r, b). Since V3 < 1,

player three will never have mass at 1. His equilibrium strategy, therefore, should be

characterized by atoms at {0}, {r}, and mass in
(
b, b
)
. Moreover, if P{bid3 = r} > 0 and

P{bid3 ∈ (b, b)} > 0, then it must be that b = r. Let us consider the following possibilities:

(i) player 3 has mass at {0} ∪ (b, b), b ⩾ r; (ii) player 3 has mass at {r} ∪ (r, b) and,

possibly, mass at {0}; (iii) player 3 has mass at {r} and, possibly, mass at {0}.

(i) Since player 3 is willing to bid 0, his equilibrium payoff must also be zero. So, for

bids b ∈ (b, b), we can write down:

V3G1(b)G2(b)− b = 0.

If b > r, both of the other two players must be active in (r, b). So, for b ∈ (b, b) the
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following system must hold:

V1G2(b)G3(b)− b = u∗1

V2G1(b)G3(b)− b = u∗2

V3G1(b)G2(b)− b = 0,

where u∗i ⩾ 0 are the equilibrium payoffs with u∗1×u∗2 = 0. If it is the case that u∗2 =

0, then it must be that in the region (b, b), G2(b) =
√

(b+u∗
1)V2

V1×V3
, G3(b) =

√
(b+u∗

1)V3

V1×V2
.

G3 must reach the value of 1 at b, so we get that b = V1×V2

V3
−u∗1. But evaluating G2

at b = b gives G2(b) =
V2

V3
> 1, a contradiction. For the case u∗1 = 0 the symmetric

argument holds.

If b = r, and only one of the other two players is active in (r, b), let player 1 be

active in (r, b). Let the total mass that player 2 has at {0} and/or {r} be P2. For

bids in (r, b) it must hold that

V1P2G3(b)− b = u∗1

V3P2G1(b)− b = 0

⇒

G3(b) =
b+ u∗1
P2V1

, G1(b) =
b

V3P2

.

G3 must reach the value of 1 at b, so b = P2V1 − u∗1. Check the value of G1 at b:

G1(b) =
V1

V3
− u∗

1

V3P2
. Since V1 > V3, it is necessary that player 1 has a strictly positive

payoff, u∗1 > 0. Moreover, in order for the probability masses of bids of players 1

and 2 to be completely spent and equal to one, players 1 and 2 must have atoms

at b = 1. Checking that their incentives to bid at 1 are satisfied, we have

V1

(
1

2
+

1

2
P2

)
− 1 = u∗1

V2

(
1

2
+

1

2
G1

(
b
))

− 1 = 0.
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Using these conditions to solve for u∗1, P2 and b, we have

P2 =
(V1 − 2)V2

V1V2 − 2(2− V2)V3
, u∗1 =

(V1 − 2)(V1V2 − (2− V2)V3)

V1V2 − 2(2− V2)V3

G1(b) =
2− V2
V2

, b =
(V1 − 2)(2− V2)V3
V1V2 − 2(2− V2)V3

.

For the objects to correspond to an equilibrium, it is necessary that V2 < 2. Let

us check that player two is weakly worse off from bidding in (r, b): his payoff from

bidding b = b is:

2− V2 −
(V1 − 2)(2− V2)V3
V1V2 − 2(2− V2)V3

⩽ 0.

If V1 > 2 and V1V2−2(2−V2)V3 > 0, the above condition implies V1V2−2(2−V2)V3 <

V1V3 − 2V3, which is not true, given the condition V2 > 1 > V3. If it is the case

that V1 < 2 and V1V2 − 2(2 − V2)V3 < 0, it can be seen that these two conditions

are incompatible with b being weakly lower than V3 (the latter being necessary for

player 3 to be willing to bid up to b).

(ii) The other two players must have atoms at zero, and, therefore, zero payoffs. b

cannot be greater than V3. If there are no atoms at 1, either player one or player

two could be better of by bidding slightly below their valuation and winning the

item with certainty. If there are atoms at 1, arguments similar to part (i) of this

proof apply.

(iii) In order for player 3 to be willing to bid r, both of the other two players must have

mass at 0 and zero payoffs. It is not an equilibrium for any of them to bid 0 with

probability one, since that would lead to possibility of profitable deviations. Player

3 must have a non-negative payoff from bidding r, so P{bid1 = 0}P{bid2 = 0}V3 =

r + u∗3, u∗3 ⩾ 0. If there is bidding in (r, b) ̸= ∅, 1’s and 2’s indifference with the

fact that 3’s mass is spent completely on r, by assumption, give

G1(b) =
b

V2
,

G2(b) =
b

V1
.

Together with absence of atoms in (r, b) this means that P{bid1 = 0} = r
V2

, and
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P{bid2 = 0} = r
V1

. Then, 3’s payoff from bidding r is r2

V1V2
V3 − r, which is less than

zero, given r < 1, V1 > V3, V2 > V3 and mini∈{1,2,3}{Vi} > r. This contradicts 3’s

willingness to bid r.

If there is no bidding in (r, b), players 1 and 2 must also have atoms at 1. From

1’s and 2’s indifference between bidding 0 and 1, we have that P{bid1 = 0} = 2−V2

V2
,

P{bid2 = 0} = 2−V1

V1
. For players 1 and 2 not to be willing to bid slightly above r,

it must be that 2−V2

V2
V1 ⩽ r and 2−V1

V1
V2 ⩽ r. Then, player 3’s payoff from bidding r

is 2−V2

V2

2−V1

V1
V3 − r ⩽ r

V1

r
V2
V3 − r < 0, which contradicts player 3’s willingness to bid

r.

D.2 Proof of Proposition 4.ii

It is straightforward to check that the CDFs described in the Proposition statement

do constitute equilibria. Let us, therefore, show that those equilibria are all equilibria

possible for the range of parameters stated in the Proposition. So far we know that all

equilibria can be described by atoms at {0}, {r}, and {1}, and continuously distributed

mass of bids in (r, b). Let us follow the steps:

(i) There cannot be any mass above V2 = V3 = v, continuous, or atoms, as for players

2 and 3 it is more expensive to bid above v, than what they can get from the item

if they win it. So, b ⩽ v, in all equilibria.

(ii) Player 1 always has a positive equilibrium payoff: he can always bid slightly above

v, which makes his payoff bounded below by V1 − v > 0. This implies that player

1 cannot have an atom at 0, since it implies a zero equilibrium payoff.

(iii) In equilibrium it is never the case that all the bids concentrate on {0} and {r}. If

it was the case, player 2, or player 3 would have a profitable deviation of bidding

just slightly above r and winning the item with certainty. Overall, it implies that

there is some continuously distributed mass of bids in (r, b) ̸= ∅.

(iv) b = v, otherwise either player 2, or player 3 would have a profitable deviation.

(v) Since player 1 has a positive payoff, he must be bidding somewhere in (b, v), b ⩾ r.

Every point in (r, v) is a point of increase at least for one player. In order to have
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at least one other player bidding in (r, v), player 1 must have an atom at r. This,

in turn, implies that for player 1 every point in (r, v) is a point of increase.

(vi) Player 1’s equilibrium payoff is equal to V1 − v. This follows from the fact that the

CDFs of bids reach the value of 1 by b = v, and at least one of player 2’s and player

3’s CDF reach value of 1 exactly at b = v. Since b = v is in the best response set,

the payoff of player 1 from bidding v is his equilibrium payoff and is equal to

V1 ×G2(v)×G3(v)︸ ︷︷ ︸
1

−v.

To summarize, what we know so far is that player 1 has an atom at r and a continuously

distributed mass in (r, v) and a positive payoff of V1−v. Players 2 and 3 have atoms at 0.

At least one of them has a continuously distributed mass in (r, v), while the other could

re-join bidding in (b̃, v), b̃ ∈ [r, v], or just bid 0 with probability 1. Without loss, we let

player 2 bid continuously (r, v). We, therefor, have the following equilibrium conditions:

V1G2(b)G3(0)− b = V1 − v

V2G1(b)G3(0)− b = 0

V3G1(b)G2(b)− b ⩽ 0, for b ∈ [r, b̃),

V1G2(b)G3(b)− b = V1 − v

V2G1(b)G3(b)− b = 0

V3G1(b)G2(b)− b = 0, for b ∈ [b̃, v].

Taking into account that there is no mass in (0, r), player 1 has an atom at r, players 2

and 3 have atoms at 0, and solving for G1, G2, G3 following from the conditions above,

we get the equilibrium CDFs, stated in the proposition, with the b̃ being the “degree of

freedom” of this type of equilibria, and causing their multiplicity.

D.3 Proof of Proposition 4.iii and region characterization

Let us first show how the system A was derived.

In the type of equilibrium, such that player 1 has a positive rent, three players bid

continuously somewhere in (b̃, b̂) ⊆ [r, 1], and also have atoms at 1, the following must
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hold:

V1G2(b1)G3(b1)− b1 = U > 0,∀b1 ∈ (b̃, b̂]

V1

(
G2(b̂)G3(b̂) +

1

2
(1−G2(b̂))G3(b̂) +

1

2
G2(b̂)(1−G3(b̂))+

+
1

3
(1−G2(b̂))(1−G3(b̂))

)
− 1 = U

V2G1(b2)G3(b2)− b2 = 0,∀b2 ∈ (b̃, b̂]

V2

(
G1(b̂)G3(b̂) +

1

2
(1−G1(b̂))G3(b̂) +

1

2
G1(b̂)(1−G3(b̂))+

+
1

3
(1−G1(b̂))(1−G3(b̂))

)
− 1 = 0

V3G1(b3)G2(b3)− b3 = 0,∀b3 ∈ (b̃, b̂]

V3

(
G1(b̂)G2(b̂) +

1

2
(1−G1(b̂))G2(b̂) +

1

2
G1(b̂)(1−G2(b̂))+

+
1

3
(1−G1(b̂))(1−G2(b̂))

)
− 1 = 0,

which follows from the indifference of players across the increase points for continuous

bidding, and also the indifference between bidding 1 and b̂, the upper-bound of the

continuous bidding of all three players. Since V2 = V3 = v, it must be that the indifference

conditions for players 2 and 3 are identical, and it also means that G2(b) = G3(b) for

b ∈ (b̃, 1]. So, after some transformations, we can state that G2(b) = G3(b) =
√
b+U√
V1

,

G1(b) = b
v
×

√
V1√
b+U

, for b ∈ (b̃, b̂]. Since player 2’s and 3’s indifference conditions are

identical, we have two equations instead of three, the condition of players’ willingness to

bid 1 transforms into

V1

(
1

3
+

1

3

√
U + b̂√
V1

+
1

3

U + b̂

V1

)
− 1 = U

v

(
1

3
+

1

6

√
U + b̂√
V1

+
b̂

6v
×

√
V1

b̂+ U
+

1

3

b̂

v

)
− 1 = 0,

from which it is straightforward to derive system A.

Denoting t .=
√

U+b
V1

and solving for t in the first and the second equation of system
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A, we have


t = 3+2U−b̂

V1
− 1

t =
b̂
6v

+U+b̂
6V1

1
v
− b

3v
− 1

3

.

Since we are interested in finding U ∈ R+ and b̂ ∈ R+, it must be that t > 0. So, from the

second equation for t it follows that 3 > b̂+ v must hold. Combining the last inequality

with b̂ ⩾ 0 it must be that the region for this type of equilibria must be included into

v < 3.

Setting the two expressions for t equal to each other, we have that

3 + 2U − b̂

V1
− 1 =

b̂
6v

+ U+b̂
6V1

1
v
− b

3v
− 1

3

.

Expressing U in terms of b̂, V1, and v,

U =
12b̂− vb̂− V1b̂− 2b̂2 + 6V1 + 6v − 2V1v − 18

12− 4b̂− 5v
.

Plugging this expression for U back into the first equation of the system (A), above, we

have an equation for b̂√
(6− b̂− 2v)V1 − 6(1− b̂)(3− b̂− v)

(12− 4b̂− 5v)V1
=

2b̂V1 − v(3− b̂− V1)

(12− 4b̂− 5v)V1
. ((B))

Raising both sides of the equation to the power of 2, we have a cubic equation in b̂,

Ab̂3 +Bb̂2 + Cb̂+D = 0,

where coefficients are

A := −24V1

B := 9v2 − 42(v − 4)V1

C := −3(12V1(10− V1)− V1v(68− 3V1) + v2(6 + 8V1))

D := 9v2 + 216V1 − 162vV1 + 24v2V1 − 72V 2
1 + 54vV 2

1 − 9v2V 2
1 .
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At least one root of the cubic equations is always a real number. The other two

roots are real numbers whenever the cubic discriminant is real. We can check that the

root which is always real is greater than 1. Notice that as b̂ → +∞ in the expression

Ab̂3 +Bb̂2 +Cb̂+D the term Ab̂3 becomes dominant. Since A = −24V1 and V1 is always

positive, we get that Ab̂3+Bb̂2+Cb̂+D → −∞ as b̂→ +∞. Now, if we plug in the value

of b̂ = 1, we get that Ab̂3 +Bb̂2 +Cb̂+D = A+B +C +D = 9(4− v)(v − 1)V 2
1 , which

is always non-negative given that v ∈ (1, 3). Hence, the expression Ab̂3 + Bb̂2 + Cb̂ +D

changes the sign, as b̂ increases from 1 to infinity. Thus, the root, which is always real,

is greater than 1.

So, it is necessary for the kind of equilibrium we are looking for to exist that the

cubic discriminant is positive:

D = 18× A×B × C ×D − 4×B3 ×D +B2 × C2 − 4× A× C3 − 27× A2 ×D2 > 0,

which can be also simplified to

D∗ = −(12v3 + 49vV1(8 + 3V1)− 4v2(3 + 34V1)− 4V1(64 + 3V1(13 + 6V1))) > 0. (D∗)

The graph (7) depicts the region of v and V1 for which the discriminant is positive taking

into account also that v must be less than 3. Denote the set of the points (V1, v), v ∈ [1, 3]

for which the cubic discriminant D is equal to zero as ∆̃.

In principle, if there are multiple solutions (U, b̂) to the system (A) that all meet

the condition U ⩾ 0, 0 ⩽ r ⩽ b̂ ⩽ 1, that would mean that there are multiple equilibria

candidates of the type we are looking for. From an observation above, there could be

at most two real values of b̂ that lie below 1. To each of those two real b̂ corresponds

one real U , as follows from the equation (B). Since we are interested in such pairs (U, b̂),

that U ⩾ 0, finding pairs (V1, v) such that U = 0 is informative for establishing the

region, for which the current type of equilibria holds. Setting U = 0 in the system (A),

we get that it can hold for V1 = v and also for V1 = 3 when b̂ = 0. So, at least one U

among the solutions to the system (A) is positive for V1 ⩾ v. To see that at least one

U from the solution to (A) is positive, note that the expressions there are continuous in

all parameters and variables, except for the cases of v = 0 or V1 = 0. Then, by setting,

for example, V1 = 1.75, v = 1.5 numerically solving the system (A) yields approximately
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Figure 7: Region for positive value of cubic discriminant
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(U, b̂) = (0.263643, 0.569679) and (U, b̂) = (−0.299109, 0.350856).

However, it can also be that the lower of U among the two solutions to the system

(A) is equal to 0 at V1 = v. If this is the case, this means that there is a subset of

(V1, v|V1 < v) where there are two solutions to (A) such that U > 0, and, hence, two

equilibrium candidates.

To find this subset, notice that the two elements U from the solutions coincide when

the two respective b̂ coincide. The two solutions b̂ coincide when the cubic discriminant

defined in the condition (D∗) is equal to zero. Hence in order to pin down the pair

of parameters (V1, v) for which both solutions U are equal to zero, we must intersect

the straight line V1 = v with the ∆̃, i.e. set of points that make the value of the

cubic discriminant D equal to zero. Plugging V1 = v into the expression for D∗ we get

D∗|V1=v = −(16 − 7V1)
2V1. This expression is equal to zero for V1 = 16

7
and V1 = 0, but

the latter is not in the region we are currently interested in. So, for pairs (V1, v) such

that {v < 3, V1 ⩾ 16
7
, V1 ⩽ v}, there are two solutions (U, b̂) to the system (A) such that

the element U is positive.

Overall, in terms of non-negativity of U , one of the necessary conditions for a pair of

(U, b̂) to be an equilibrium object is that V1 ⩾ v for v ∈
[
1, 16

7

)
, and D ⩾ 0 for v ∈

[
16
7
, 3
]
.

Another restriction for the solution (U, b̂) to correspond to an equilibrium is that

b̂ ⩾ r, i.e. the upper-bound for the continuous part of bids distribution is above the

reserve price. To establish the subset of (V1, v) for which b̂ ⩾ r, first set b̂ = r in the

system (A) and solve for the U and V1. This way we get V1 expressed in terms of v and

r, for which it holds that b̂ = r. There are two such V1’s:

V1;I,II =
1

3(4− v)(2− r − v)

(
36− 60r + 4(7− r)r2 − 27v + (34− 7r)rv + 4(1− r)v2

± (1− r)(12− 4r − 5v)
√
r2 − r(6− v) + (3− v)2

)
.

The values of V1;I and V1;II coincide for three values of v: v = 4
5
(3−r), v = 1

2

(
6− r −

√
3r(4− r)

)
,

and v = 1
2

(
6− r +

√
3r(4− r)

)
. The last value is greater than 3 for r > 0, so it is

not among the values of (V1, v) we are interested in. The values of (4/5)(3 − r) and
1
2
(6 − r −

√
3r(4− r)) coincide for r = 1

7
. For r > 1

7
, setting v = 4

5
(3 − r) makes√

r2 − r(6− v) + (3− v)2 not a real number. Thus, for r ∈ [0, 1
7
), V1,I and V1,II intersect

twice, while for r ∈ [1
7
, 1] they intersect once, at v = 1

2

(
6− r −

√
3r(4− r)

)
. Notice that
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for this value of v the value of V1;I and V1;II is also 1
2

(
6− r −

√
3r(4− r)

)
. This means

that the two curves, V1;I and V1,II intersect the second time exactly at the 45-degree line.

Consider the curve V1;I. For values of v < 2− r, the correspondent values of V1;I are

negative, hence, are out of the region of our current interest. There is a discontinuity at

v = 2− r, and V1;I becomes positive for

v ∈
(
2− r, 1

2

(
6− r −

√
3r(4− r)

)]
. The right limit limb→2−r+0 V1,I is plus-infinity. This

curve crosses the 45-degree line at v = 8
3
(1− r).

Consider now the curve V1;II. Notice that for v → 2− r the right limit and the left

limit of V1;II coincide, and, using the L’Hospital’s rule, are equal to 3(2−r)2

2(2+r)
.

Overall, the curves V1;I and V1;II in intersect twice for r < 1
7

and once for r ⩾ 1
7
, at

the border of their domain. For r < 1
7

at v = 2 − r V1,I intersects V1,II from above and

then reaches V1,II. Thus, for r < 1
7

the union of points lying on the curves V1;I and V1;II

geometrically represent a loop.

Recall that curves V1;I and V1;II represent the set of points (V1, v) for which the

element b̂ of one of the solutions (U, b̂) to the system (A) is equal to r. Recall also that

the set ∆̃ represents the set of points for which the two solutions (U, b̂) coincide. So,

when the elements b̂ of the two solutions coincide and are equal to r, the points (V1, v)

from the graph of V1;I ∪ V1;II and from the graph of ∆̃ coincide. In other words, the two

sets of curves intersect. Notice that they cannot intersect once. This is because given

the shape of V1;I ∪ V1;II, it would have to get to the south-east of ∆̃, in order for the two

curves to intersect twice. However, to the south-east of ∆̃ there are no solutions such

that b̂ is less than 1, so there it cannot be that b̂ = r. Thus, the graphs of V1;I ∪ V1;II and

of {(V1, v) : D = 0} intersect only once and the graphs are also tangent there. In other

words, (V1;I ∪ V1;II) ∩ ∆̃ is a singleton. Denote that point
(
V ∆̃
1 , v

∆̃
)

.

Consider the case that the graph of V1;I ∪ V1;II is a loop, i.e. r < 1
7
. We can

distinguish four regions of (V1, v), as depicted on figure 8 (all regions also imply that the

cubic discriminant is non-negative):

(M) {(V1, v)|V1 ⩽ min{V1;I;V1;II}, v ⩽ v∆̃}

(N) {(V1, v)|V1 ∈ (min{V1;I;V1;II},max{V1;I;V1;II}), v < 2− r}

(N′) {(V1, v)|V1 ∈ (min{V1;I;V1;II},max{V1;I;V1;II}), 2− r ⩽ v ⩽ v∆̃}

(K) (A ∪ B ∪ B′)C
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Figure 8: Regions for values of V1 and v, r < 1/7

Recall that the set of points V1;I ∪ V1;II represent the parameters for which the system

(A) has a solution such that b̂ = r. So, as we cross the graph of V1;I ∪ V1;II go from the

interior of one of the regions above to the interior of the other region, b̂ from one of the

solutions would cross r, and when we go from the interior of region (M) to the interior of

region (K) two solutions would cross r. Let us look at some typical elements of the sets

(M)-(K) to understand the ranking of b̂ relative to r from the solutions from each of the

regions. Set r = 0.03. Check that the points (2.62, 2.2), (2.9, 2.2), (2.62, 2.63), (2.9, 2.63)

lie in the interiors of regions (M), (N), (N′), and (K), respectively. The correspondent

pairs of solutions are:

- (U, b̂) = (0.526087, 0.125546) and (U, b̂) = (−0.070028, 0.0798147) for the point

(V1, v) = (2.62, 2.2);

- (U, b̂) = (0.809835, 0.0975269) and (U, b̂) = (−0.0201097, 0.020638) for the point

(V1, v) = (2.9, 2.2);

- (U, b̂) = (0.133118, 0.0176779) and (U, b̂) = (0.00617516, 0.0409543) for the point

(V1, v) = (2.62, 2.63);

- (U, b̂) = (0.471844,−0.0553398) and (U, b̂) = (−0.0125482, 0.0138343) for the point

(V1, v) = (2.9, 2.63);
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Figure 9: Regions for values of V1 and v, r ⩾ 1/7

Overall, the b̂ from the solution that corresponds to a higher U crosses r from above as

we go from either of regions (M) and (N) to either of regions (N′) and (K); while the b̂

from the solution that corresponds to a low U crosses r from above as we go from either

of regions (M) and (N′) to either of regions (N) and (K);

Consider now the case that r ⩾ 1
7
, so that V1,I and V1,II intersect only once at

v = 1
2

(
6− r −

√
3r(4− r)

)
. For this case we can distinguish only three regions, as

depicted on figure 9:

(M̃) {(V1, v)|V1 ⩽ min{V1;I;V1;II}, v ⩽ v∆̃}

(Ñ) {(V1, v)|V1 ∈ (min{V1;I;V1;II},max{V1;I;V1;II})

(K̃) (A ∪ B)C

In this case consider typical elements of those sets. For r = 0.5 the points (V1, v) =

(1.2, 1.1), (V1, v) = (1.575, 1.1), (V1, v) = (1.575, 1.65) lie in (M̃), (Ñ), and (K̃), respec-

tively. The correspondent pairs of solutions are:

- (U, b̂) = (0.100275, 0.903202) and (U, b̂) = (−0.490029, 0.550519) for the point

(V1, v) = (1.2, 1.1);
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- (U, b̂) = (0.475719, 0.902897) and (U, b̂) = (−0.384299, 0.419833) for the point

(V1, v) = (1.575, 1.1);

- (U, b̂) = (−0.0960184, 0.467774) and (U, b̂) = −0.2728940.411679) for the point

(V1, v) = (1.575, 1.65);

Thus, the b̂ from the solution that corresponds to a higher U crosses r from above as we

go from either of regions (M̃) and (Ñ) to the region (K̃); and the b̂ from the solution that

corresponds to a low U crosses r from above as we go from the region (M̃) to either of

regions (Ñ) and (K̃);

Note also that in the case r ⩾ 1
7

the curve V1;II intersects the 45-degree line twice

and the larger value of v at the intersection is 1
2

(
6− r −

√
3r(4− r)

)
(which is also a

point at which V1;II and V1;I coincide). For r ⩾ 1
7

the value of 1
2

(
6− r −

√
3r(4− r)

)
is less than or equal to 16

7
. The point of tangency of V1,I ∪ V1,II with ∆̃ (the points for

which cubic discriminant is zero), is below the higher intersection of V1,II with a 45 degree

line, which itself is below the point of tangency of a 45 degree line and the set of points

∆̃. This means that for r ⩾ 1
7

one of the necessary conditions for a pair (U, b̂) to be an

equilibrium object is that V1 ⩾ v, since for this region only the solutions with higher U

are such that U is non-negative.

Overall, recall that for a pair U , b̂ to be an equilibrium object, it needs to be a

solution to the system (A), U must be non-negative, and b̂ needs to be weakly greater

than r. For r ⩽ 1
7

the equilibrium (equilibria) exists (exist) in the following regions:

(Q) V1 ∈ [v,+∞) for v ∈ [1, 2 − r], V1 ∈ [v, V1;I] for v ∈
(
2− r, 16

7

)
. There is one

equilibrium pair U , b̂, which corresponds to the solution to the system (A) with a

higher U

(Q′) V1 ⩾ v, v ∈
[
16
7
, 8
3
(1− r)

)
. Similar to the region described above, there is one

equilibrium pair (U, b̂), which corresponds to the solution to the system (A) with a

higher U .

(R) V1 < min{v, V1,I}, v ∈
[
16
7
, 8
3
(1− r)

)
, D ⩾ 0. There are two pairs, which solutions

to the system (A) and which are also equilibrium objects. This is because the lower

U , which is a solution, is now non-negative. And elements b̂ which are parts of

solution are now not less than r. So, in this sub-region there are two equilibria
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possible. Note also that player 1 has a positive rent here, U ⩾ 0, even though he

has lower valuation V1 than the other two players, who have v.

(S) V1 ∈ [V1,I, v], v ∈
[
8
3
(1− r), 1

2

(
6− r −

√
3r(4− r)

)]
. There is one pair, which

solutions to the system (A) and which is an equilibrium object. Note, however,

that in this pair U is lower, than in the other pair. However, since in the pair with

the higher U the element b̂ is lower than r, that pair cannot be an equilibrium.

As for r > 1
7
, the equilibrium exists only in the region V1 ∈ [v,+∞) for v ∈ [1, 2 − r],

V1 ∈ [v, V1;I] for v ∈
(
2− r, 16

7

)
. An equilibrium pair (U, b̂) is the solution to the system

(A) with the higher value of U .

D.4 Proposition 4.iv region characterization

Without loss, let player 1 be the one with the non-negative payoff u1 ⩾ 0. Denote the

size of player 3’s atom at 0 by P3. The behavior of CDFs of player 1 and player 2 in the

continuous part (bidding in (r, b)) follows from

V1G2(b)P3 − b = U

V2G1(b)P3 − b = 0

⇒

G1(b) =
b

V2 × P3

, G2(b) =
b+ U

V1 × P3

.

The equilibrium objects, that need to be determined, are, therefore, P3, i.e. with what

probability is player 3 inactive; b̂, the upper-bound of the support of continuous bidding;

and U , player 1’s equilibrium payoff. Determining these equilibrium objects and their

expressions through V1, V2, and V3 will allow to determine the subset of parameters, for

which the current type of equilibrium holds. These objects can be inferred from the

indifference of players 1 and 2 between bidding b̂ and 1; and indifference of player 3
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between bidding 0 and 1. Writing down these conditions:

V1 ×G2(b̂)× P3 − b̂ =

V1

(
G2(b̂)P3 +

1

2
(1−G2(b̂))P3 +

1

2
G2(b̂)(1− P3) +

1

3
(1−G2(b̂))(1− P3)

)
− 1 = U,

V2 ×G1(b̂)× P3 − b̂ =

V2

(
G1(b̂)P3 +

1

2
(1−G1(b̂))P3 +

1

2
G1(b̂)(1− P3) +

1

3
(1−G1(b̂))(1− P3)

)
− 1 = 0,

V3

(
G1(b̂)G2(b̂) +

1

2
(1−G1(b̂))G2(b̂) +

1

2
G1(b̂)(1−G2(b̂)) +

1

3
(1−G1(b̂))(1−G2(b̂))

)
− 1 = 0.

Using the fact that G1(b̂) =
b̂

V2×P3
and G2(b̂) =

b+U
V1×P3

, we can rewrite the above conditions

as a system of three equations:

1

3
V1 +

1

6
P3V1 +

1

6

b̂+ U

P3

+
1

3
(b̂+ U) = 1 + U (1)

1

3
V2 +

1

6
P3V2 +

1

6

b̂

P3

+
1

3
b̂ = 1 (2)

1

3
V3 +

1

6

b̂+ U

V1P3

+
1

6

b̂

V2P3

+
1

3

(b̂+ U)b̂

V1V2P 2
3

= 1. (3)

Let us denote U and b̂ that follow from the equations (1) and (2) as U∗ and b̂∗, respectively.

Then,

U∗ =
P3(2 + P3)(V1 − V2)

4P3 − 1
, b̂∗ =

P3(6− (2 + P3)V2)

1 + 2P3

.

Plugging the expression for b̂∗ into the equation (3), solving for U , and denoting that

solution as Ũ , we get

Ũ =
P3((2 + P3)V2 − 6)

1 + 2P3

+
P3V1(6 + V2(2V3(1 + 2P3)− 8− 13P3))

3(V2 − 4)
.

From now on, let us consider the two sub-cases: (a) P3 >
1
4
; and (b) P3 <

1
4
:

(a), P3 >
1
4

In this case U∗ can only be non-negative if V1 ⩾ V2. So, this is one of the

necessary conditions. Another necessary condition is that V2 ⩽ 3, which follows from the

fact that b̂∗ must be non-negative. Let us establish the remaining necessary conditions
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in terms of V1, V2, V3, and r from the facts that: U∗ and Ũ must cross and they must be

non-negative; P3 ∈ (1
4
, 1]; b̂ ∈ [r, 1]; Gi(b̂) ⩽ 1, i = 1, 2; V3G1(b̂)G2(b̂) ⩽ b̂.

Let us consider U∗
1 and Ũ as functions of P3, U∗(P3), and Ũ(P3). We are interested

in their intersection (if it exists) at some P ∗
3 ∈ (1

4
, 1]. Since P ∗

3 = 0 is not the intersection

we are interested in, we can consider the intersection(s) of the functions υ∗(P3) =
Ũ(P3)
P3

,

and υ̃(P3) =
U∗(P3)

P3
. Note that under the restriction that V2 ⩽ 3, υ̃ is strictly decreasing

in V3. If V3 is small enough so that υ̃(1) ⩾ υ∗(1) (i.e. if V3 ⩽ 4V1V2+5V2−4−3V1−V 2
2

V1V2
),

then υ̃′(1
4
) > 0 and υ̃′(1) > 0.11 For P3 > 0, υ̃ can change monotonicity at most once,

thus, for P3 ∈ (1
4
, 1] the two curves cross only once: υ∗(P3) is decreasing in P3 with

limP3↓ 1
4
u∗(P3) = +∞; υ̃ is increasing in P3 if the two curves cross at P3 ∈ (1

4
, 1]. So,

another necessary condition is that V3 ⩽ 4V1V2+5V2−4−3V1−V 2
2

V1V2
. Note also, that since υ̃ is

increasing in V2 and υ∗ is decreasing in V2 given our restrictions, the point of intersection

of the two curves is decreasing in V2.

Note that b̂∗ is always weakly less than 1 under our restrictions. b̂∗ needs also to be

weakly greater than r when υ∗ and υ̃ cross. b̂∗ achieves maximum with respect to P3 at

P3 =
√
3
√

V2(4−V2)

2V2
− 1

2
∈ [0, 1] for V2 ∈ [1, 3]. Let us therefore solve for such values of V3,

at which at the intersection of υ̃ and υ∗ the value of b̂∗ is equal to r, and for values of V3
between the pairs identified above, it will be satisfied that b̂∗ > r. Treating, for now, V3
as endogenous parameter and solving the system

υ̃(P3;V3) = υ∗(P3;V3)

b̂∗(P3) = r (C)

11This is because υ̃′(1) and υ̃′( 14 ) are decreasing in V3, given our restriction that V2 ⩽ 3; for υ̃′(1) to be
weakly positive, it needs to hold that V3 ⩽ 16+V2(−8+13V1+V2)

4V1V2
, and for υ̃′( 14 ) to be weakly positive, it needs

to hold that V3 ⩽ 13
4 + (4−V2)

2

V1V2
; both of the latter two inequalities are implied by V3 ⩽ 4V1V2+5V2−4−3V1−V 2

2

V1V2
.
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with respect to P3 and V3 gives us two pairs of roots:

P I
3 =

3− r − V2 − ψ

V2

V I
3 =

1

V1V2(8− 8r − 3V2)
×(

16r3 − 144 + 36V1 + V2(90− 13V2)− V1V2(6V2 − 2)+

2r2(11V2 − 56)− r(V1(12 + 23V2)− 240 + V2(112− 13V2))

−(48− 12V1 − 14V2 + 3V1V2 + 16r2 − r(64− 14V2))ψ
)

P II
3 =

3− r − V2 + ψ

V2

V II
3 =

1

V1V2(8− 8r − 3V2)
×(

16r3 − 144 + 36V1 + V2(90− 13V2)− V1V2(6V2 − 2)+

2r2(11V2 − 56)− r(V1(12 + 23V2)− 240 + V2(112− 13V2))

+(48− 12V1 − 14V2 + 3V1V2 + 16r2 − r(64− 14V2))ψ
)
, (1)

where ψ =
√

(3− r)2 − (6− r)V2 + V 2
2 . Note that P I

3 ⩽ P II
3 . Thus, the necessary

conditions that follow from the requirement b̂ ⩾ r is that V3 ⩾ V I
3 whenever P I

3 ∈ [0.25, 1]

and V3 ⩽ V II
3 whenever P II

3 ∈ [1
4
, 1].

From the restriction G1(b̂) ⩽ 1 ⇐⇒ b̂
V2P3

⩽ 1 follows the necessary condition V3 ⩾
9V2+14V1V2−17V1−9V 2

2

V1(5V2−8)
whenever 2−V2

V2
∈ [1

4
, 1]. This is implied by the following observations:

G1(b̂
∗) = b̂∗

V2P3
= 6−(2+P3)V2

(1+2P3)V2
is decreasing in P3; the P3 corresponding to the intersection

of υ̃ and υ∗ is increasing in V3; so V3 must be high enough so that when at the cross of

υ̃ and υ∗, G1(b̂) is weakly less than 1; G1(b̂) is exactly equal to 1 at the intersection of

υ̃ and υ∗ when V3 is equal to 9V2+14V1V2−17V1−9V 2
2

V1(5V2−8)
, and this occurs at P3 = 2−V2

V2
, which

establishes the considered condition.

By the similar logic, from the restriction G2(b̂) ⩽ 1 follows the restriction V3 ⩾
32V2−9V1−3

(
8−
√

9V 2
1 −16(4−V2)(V2−1)

)
8V2

, whenever V1−4V2+8−
√

9V 2
1 −16(4−V2)(V2−1)

4(V1+V2)
∈ [1

4
, 1] (with the

latter being implied by V1 ⩾ V2).

Finally, it must be non-profitable for player 3 to bid anywhere in [r, b̂], which is
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formally written down as

V3G1(b)G2(b)− b ⩽ 0,∀b ∈
[
r, b̂
]

⇐⇒

V3 ×
b(b+ U)

V1V2P 2
3

⩽ b∀b ∈
[
r, b̂
]

⇐⇒

V3 ×
b̂+ U

V1V2P 2
3

⩽ 1.

Using the expressions for Ũ and b̂∗, V3× b̂+U
V1V2P 2

3
can be rewritten as V3(6+V2(2V3(1+2P3)−8−13P3))

3(V2−4)V2P3

.
=

ϕ(P3). Note that if ϕ(P3) = 1 for some P ∗
3 ∈ [1

4
, 1], then ϕ(P3)

′ ⩾ 0.12 Using the fact

that the point of intersection of υ∗ and υ̃, P †
3 , is increasing in V1,13, we can establish the

upper bound on V1, such that if V1 is below that bound, V3G1(b̂)G2(b̂) ⩽ b̂. That bound

follows from the system

υ∗(P3) = υ̃(P3)

V3G1(b̂
∗)G2(b̂

∗) = b̂∗,

and is

V1 =
1

(V2 − V3)2(36 + V 2
2 (V3 − 1) + V3(4V3 − 13)− V2(5 + V3(43 + V3(4V3 − 25))))

×

× ((V2(3V2 − 12 + (13− 4V3)V3)(V3((23− 8V3)V3 − 24) +

V 2
2 (3 + 4(V3 − 4)V3)− 2V2(6 + V3(2V3(16 + (V3 − 7)V3)− 35))))

)
.

Combining all the necessary conditions established above, we have the necessary and

sufficient condition for the type of equilibrium with players 1 and 2 bidding continuously

in (r, b̂), and having atoms at 0, r, and 1; while player 3 only has atoms at 0 and 1, with
12To see this, note that the root of ϕ(P3) = 1 is P ∗

3 = 2(3−V2(4−V3))V3

V2((13−4V3)V3+3V2−12) ; while the derivative of
ϕ(P3) is ϕ(P3)

′ = 2(3−V2(4−V3))V3

3P 2
3 (4−V2)V2

. The minimum of that derivative, given the constraints P ∗
3 ∈ [ 14 , 1] is

0; thus ϕ(P3) is weakly increasing in the parameters region of our interest.
13As can be seen by taking the implicit derivative P3 with respect to V1 that follows from F (P3) =

υ∗ − υ̃.
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the size of atom at 0 being greater than 1
4
:

V1 ⩾ V2

V2 ⩽ 3

V3 ⩽
4V1V2 + 5V2 − 4− 3V1 − V 2

2

V1V2

V3 ⩾
1

V1V2(8− 8r − 3V2)
×(

16r3 − 144 + 36V1 + V2(90− 13V2)− V1V2(6V2 − 2)+

2r2(11V2 − 56)− r(V1(12 + 23V2)− 240 + V2(112− 13V2))

−(48− 12V1 − 14V2 + 3V1V2 + 16r2 − r(64− 14V2))ψ
)
,

when 3− r − V2 − ψ

V2
∈ [

1

4
, 1]

V3 ⩽
1

V1V2(8− 8r − 3V2)
×(

16r3 − 144 + 36V1 + V2(90− 13V2)− V1V2(6V2 − 2)+

2r2(11V2 − 56)− r(V1(12 + 23V2)− 240 + V2(112− 13V2))

+(48− 12V1 − 14V2 + 3V1V2 + 16r2 − r(64− 14V2))ψ
)
,

when 3− r − V2 + ψ

V2
∈ [

1

4
, 1]

V3 ⩾
9V2 + 14V1V2 − 17V1 − 9V 2

2

V1(5V2 − 8)

V3 ⩾
32V2 − 9V1 − 3

(
8−

√
9V 2

1 − 16(4− V2)(V2 − 1)
)

8V2

V1 ⩽
1

(V2 − V3)2(36 + V 2
2 (V3 − 1) + V3(4V3 − 13)− V2(5 + V3(43 + V3(4V3 − 25))))

×

× ((V2(3V2 − 12 + (13− 4V3)V3)(V3((23− 8V3)V3 − 24) +

V 2
2 (3 + 4(V3 − 4)V3)− 2V2(6 + V3(2V3(16 + (V3 − 7)V3)− 35))))

)
,

where ψ =
√

(3− r)2 − (6− r)V2 + V 2
2 .

(b), P3 < 1
4
. In this sub-case, the exact algebraic expression for the region is not

presented. However, the procedure, that can used to derive the respective region is
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described. Recall the expressions for U∗, and Ũ :

U∗ =
P3(2 + P3)(V1 − V2)

4P3 − 1
,

Ũ =
P3((2 + P3)V2 − 6)

1 + 2P3

+
P3V1(6 + V2(2V3(1 + 2P3)− 8− 13P3))

3(V2 − 4)
.

The root of U∗ = Ũ , P3 = 0 is not a root we are interested in, as well as the cases

P3 = 1
4
, or P3 = −1

2
. In lieu of U∗ = Ũ , we can therefore work with the cubic equation

in P3:

3(2 + P3)(V1 − V2)(1 + 2P3)(V2 − 4) = 3((2 + P3)V2 − 6)(4P3 − 1)(V2 − 4)+

+V1(6 + V2(2V3(1 + 2P3)− 8− 13P3))(4P3 − 1)(1 + 2P3).

The root that is real and always exists is negative. Therefore for there to exist a root

P3 ∈ (0, 1/4), it is necessary that a cubic discriminant is positive. Using the notation,

A = 4V1V2(13− 4V3)

B = −3(3(−4 + V2)V2 + 4V1(3 + V2(−4 + V3)))

C = 9(4 + V1 − 2V2)(−4 + V2)

D = −9(−4 + V1 + V + 2) + V1V2(−1 + V3),

we have that a necessary condition for the equilibrium with P3 ∈ (0, 1/4) to exist is

18× A×B × C ×D − 4×B3 ×D +B2 × C2 − 4× A× C3 − 27× A2D2 ⩾ 0.

From the fact that we need b̂ ⩾ r ⩾ 0, and using the expression for b̂⋆,

b̂⋆ =
P3(6− (2 + P3)V2)

1 + 2P3

,

it follows that it is necessary that V2 ⩽ 3.

Under the restrictions that 1 ⩽ V1 ⩽ V2 ⩽ V3, the function υ̃(P3) =
Ũ(P3)
P3

is increasing

in P3 on P3 ∈ (0, 1/4). If it was decreasing in P3, or if it achieved a maximum for some

P3 = P ∗ ∈ (0, 1/4), the function Ũ would be negative on P3 ∈ (0, 1/4), contradicting the

equilibrium condition of non-negative players’ payoffs. We, therefore, must require that
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Ũ(1/4) ⩾ 0, which can be written down as

−16 + 6V2 −
(V1(8 + V2(−15 + 4V3)))

4− V2
⩾ 0.

Besides the restriction that b̂ ⩾ 0, we need to impose more requirement in order to

insure b̂ ⩾ r. Similarly to as we did before, in case P3 > 1/4, we need to consider roots

(P3, V3) of the system C. However, now we need to account for the fact that there are up

to two intersections of U∗ and Ũ possible. The P3 that follows from higher intersection

of U∗ and Ũ is decreasing in V3 and the P3 that follows from the lower intersection of

U∗ and Ũ is increasing in V3. There are also two intersections of b̂∗ = r with respect

to P3, and those values of P3 that lie between the points of intersection are the ones

for which the condition b̂∗ ⩾ r is satisfied. From the expressions of the roots of the

system, (P I
3 , V

I
3 ), and (P II

3 , V II
3 ) it is possible to say that P II

3 corresponds to the higher

intersection of b̃∗ = r and P I
3 - to the lower. But it is not possible to say whether either

of V I
3 or V II

3 corresponds to the lower or higher intersection of Ũ and U∗. However, an

implicit derivative of P3 that follows from Ũ = U∗ with respect to V3 can be evaluated

at (P3, V3) = (P I
3 , V

I
3 ) and (P3, V3) = (P II

3 , V II
3 ). The parameters with dP3

dV3
> 0 would

correspond to the lower intersection of Ũ and U∗, and vice versa. Using the implicit

function derivative,

dP3

dV3
= −

∂(Ũ−U∗)
∂V3

∂(Ũ−U∗)
∂P3

=
2(2P3 + 1)V1V2

3(V2 − 4)

(
12(P3(P3(7V2−16)+V2+8)+V2−1)

(8P 2
3+2P3−1)

2 + 2V1(V2(−4P3(2P3−1)(4V3−13)−2V3−7)+54)
3(1−4P3)2(V2−4)

)
.
= χ(P3;V3).

Then, the restrictions that follow from b̂ ⩾ r are:

- for the region of parameters (V1, V2, V3, r) such that P I
3 > 1/4 and P II

3 > 1/4, there

are no subsets such that b̂ ⩾ r;

- for the region of parameters (V1, V2, V3, r) such that P I
3 < 1/4 and P II

3 > 1/4,

the subset of parameters such that χ(P I
3 , V

I
3 ) < 0 (i.e. the parameters for which

(P I
3 , V

I
3 ) corresponds to the higher intersection of U∗ and Ũ), we need to exclude
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V3 > V I
3 ; remainder of the region P I

3 < 1/4 and P II
3 > 1/4 can be included;

- for the region of parameters (V1, V2, V3, r) such that P I
3 < 1/4 and P II

3 < 1/4,

– the subset of parameters for which χ(P I
3 ;V

I
3 ) < 0 and χ(P II

3 ;V II
3 ) < 0 should

be included entirely;

– the subset χ(P I
3 ;V

I
3 ) < 0 and χ(P II

3 ;V II
3 ) > 0 is empty, since P I

3 < P II
3 , but

χ < 0 means higher intersection of Ũ and U∗;

– from the subset for which χ(P I
3 ;V

I
3 ) > 0 and χ(P II

3 ;V II
3 ) < 0 exclude V3 <

min{V I
3 , V

II
3 };

– from the subset for which χ(P I
3 ;V

I
3 ) > 0 and χ(P II

3 ;V II
3 ) > 0 exclude V3 ∈

([V I
3 , V

II
3 ])C .

The remaining restrictions follow from making G1(b̂) ⩽ 1, G2(b̂) ⩽ 1, and making

sure it is non-profitable for player 3 to bid anywhere in b ∈ (0, 1).

In equilibrium of this type, G1(b̂) = b̂/(V2P3). Replacing b̂ with the expression for

b̂∗, and treating it like a function of P3, we have that

G1(P3) =
6− (2 + P3)V2
V2(1 + 2P3)

.

This expression is decreasing in P3 under the restriction V2 ⩽ 3 that we have previously

established. G1(P3) = 1 at P3 =
2
V2
−1. Since we need to have G1 ⩽ 1 for some P3 ⩽ 1/4,

we need to impose V2 ⩾ 8
5
. In order to insure that G1 ⩽ 1 for the intersection of Ũ and

U∗, let us solve the system

G1(P3) = 1

Ũ = U∗

with respect to P3 and V3. We get that the root of that system is P †
3 = 2

V2
− 1 and

V †
3 = V1(17−14V2)+9(V2−1)V2

V1(8−5V2)
. If P †

3 is below 0 (happens for V2 ⩾ 2), no additional restrictions

are needed. If P †
3 ∈ (0, 1/4), we need to insure that equilibrium P3 ⩾ P †

3 , since G1(P3) is

decreasing in P3 for at least one of the two non-trivial roots of Ũ = U∗. G1(P3) does not

depend on V3. As we saw, equilibrium P3 can increase or decrease in V3, depending on

whether it corresponds to the higher or the lower intersection of Ũ and U∗. Check how
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many roots of U∗ = Ũ there are in P3 ∈ (0, 1/4). If 2(V2−V1) ⩽ 2V1(V2(V3−4)+3)
3(V2−4)

+2V2− 6,

there is one root, that is the one which is decreasing in V3. For this case we need to

restrict V3 ⩽ V †
3 . If 2(V2 − V1) >

2V1(V2(V3−4)+3)
3(V2−4)

+ 2V2 − 6, there are two roots. For this

case we need to understand the sign of dP3

dV3
. Again using the function χ(P3, V3), we need

to have V3 ⩽ V †
3 if χ(P †

3 , V
†
3 ) < 0.

Consider the restriction G2(b̂) ⩽ 1. In equilibrium G2(b̂) =
U+b̂
V1P3

. Using the expres-

sions for Ũ and b̂∗, G2 can be rewritten, as a function of P3:

G2(P3) =
V2(4P3V3 − 13P3 + 2V3 − 8) + 6

3(V2 − 4)
,

which is linear in P3, and, besides, does not depend on V1. Given that we are already

restricted to V2 ⩽ 3, G2 is increasing in P3 if V3 ⩽ 13/4 and vice versa. Solving the

system

U∗ = Ũ

G2(P3) = 1

with respect to P3 and V1, we get the root

P ‡
3 =

2V2V3 − 11V2 + 18

13V2 − 4V2V3

V ‡
1 =

V2(V2(−4(V3 − 8)V3 − 55)− 24V3 + 51)

9(V2(V3 − 4) + 3)
.

So, if (V3 ⩽ 13/4 and P ‡
3 ⩾ 1/4), or if (V3 ⩾ 13/4 and P ‡

3 ⩽ 0), there are no additional

restrictions. We need to exclude all the parameters such that (V3 ⩽ 13/4 and P ‡
3 ⩽ 0),

or (V3 ⩾ 13/4 and P ‡
3 ⩾ 1/4). For P ‡

3 ∈ [0, 1/4], we need to also consider the number

of roots of Ũ = U∗ and, potentially, the sign of dP3

dV1
of the P3 that follows from Ũ = U∗,

derivative being evaluated at (P ‡
3 , V

‡
1 ). If the there is one non-trivial root of Ũ = U∗ in

P3 ∈ (0, 1/4), it is the root that is increasing in V1. Then V1 must be ⩽ V ‡
1 , if V3 ⩽ 13/4,

and V1 must be ⩾ V ‡
1 if V3 ⩾ 13/4. For the case of two non-trivial roots of U∗ = Ũ

in (0, 1/4), determine the sign of dP3

dV1
at (P3, V1) = (P ‡

3 , V
‡
1 ). If dP3

dV1
|(P ‡

3 ,V
‡
1 ) ⩽ 0 AND

V3 ⩽ 13/4, V1 must be weakly below V ‡
1 , while if dP3

dV1
|(P ‡

3 ,V
‡
1 ) ⩾ 0 AND V3 ⩾ 13/4, V1 must

be weakly above V ‡
1 . The sign of dP3

dV1
is determined from the equation Ũ = U∗ using the
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implicit function derivative:

dP3

dV1
= −

∂(U∗−Ũ)
∂V1

∂(U∗−Ũ)
∂P3

=

= − 2(2P3 + 1)(P3V2(4V3 − 13) + V2(−V3) + V2 + 9)

3(4P3 − 1)(V2 − 4)

(
12(P3(P3(7V2−16)+V2+8)+V2−1)

(8P 2
3+2P3−1)

2 + 2V1(V2(−4P3(2P3−1)(4V3−13)−2V3−7)+54)
3(1−4P3)2(V2−4)

)
.
= δ(P3;V1).

The last remaining restriction is from non-profitability of player 3’s deviation to bidding

in the interior of (0, 1), which happens if and only if V3G1(b̂)G2(b̂) ⩽ b̂. The latter can

be rewritten as V3 b̂+U
V1V2P 2

3
⩽ 1, or

τ(P3)
.
=
V3(V2(4P3V3 − 13P3 + 2V3 − 8) + 6)

3P3(V2 − 4)V2
⩽ 1.

τ(P3) is increasing whenever 3− V2(4− V3) ⩾ 0 and vice versa.

Let us solve for the roots (P3, V1) of the system

V3(V2(4P3V3 − 13P3 + 2V3 − 8) + 6)

3P3(V2 − 4)V2
= 1

U∗ = Ũ ,

and get the root

P §
3 =

2V3(V2(V3 − 4) + 3)

V2(3V2 + V3(13− 4V3)− 12)

V §
1 = (V2(3V2 + V3(13− 4V3)− 12)

(
V 2
2 (4(V3 − 4)V3 + 3)

− 2V2(V3(2V3((V3 − 7)V3 + 16)− 35) + 6)

+ V3((23− 8V3)V3 − 24)))/
(
(V2 − V3)

2
(
V 2
2 (V3 − 1)−

− V2(V3(V3(4V3 − 25) + 43) + 5) + V3(4V3 − 13) + 36)) .

As before, we need to check for the number of roots of U∗ = Ũ , and the sign of dP3

dV1
|(P §

3 ,V
§
1 ).

If (P §
3 ⩾ 1/4 and 3+V2(V3−4) ⩾ 0), there are no new restrictions needed, all parameters

such that (P §
3 ⩾ 1/4 and 3+V2(V3−4) ⩽ 0) should be excluded. If there is one non-trivial

root of Ũ = U∗ in (0, 1/4), this is the one that is increasing in V1. So if (P §
3 ⩽ 1/4 and
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3+V2(V3−4) ⩾ 0), we must exclude V1 > V §
1 ; while if (P §

3 ⩽ 1/4 and 3+V2(V3−4) ⩽ 0),

we must exclude V1 < V §
1 . If there are two roots of Ũ = U∗ in (0, 1/4), determine the

sign of dP3

dV1
at (P3, V1) = (P §

3 , V
§
1 ). If dP3

dV1
|(P §

3 ,V
§
1 ) ⩾ 0 AND 3 + V2(V3 − 4) ⩽ 0, V1 must

be weakly above V §
1 , while if dP3

dV1
|(P §

3 ,V
§
1 ) ⩽ 0 AND 3 + V2(V3 − 4) ⩾ 0, V1 must be weakly

below V §
1 . The sign of the derivative dP3

dV1
again can be determined using the function

δ(P3;V1).
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